Curvature elasticity and multi-sphere morphologies

Reinhard Lipowsky

Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany

Status. Lipid-protein bilayers form GUVs that attain a fascinating variety of different shapes including many distinct multi-sphere morphologies as predicted by the theory of curvature elasticity [97]. A particularly simple example is provided by budding, i.e. by the formation of a small spherical bud that is still connected to the mother vesicle via a closed membrane neck and points towards the exterior solution as in figure 16(a1) or towards the interior solution as in figure 16(d1) [98]. In these examples, the vesicle membrane was taken to be uniform in composition which implies that it has uniform curvature-elastic properties as well. Budding processes can also be induced by intramembrane domains as in figures 16(a2) and (d2). Such domains arise from lipid phase separation or from the assembly of protein coats [99], and the resulting budding processes represent essential steps for endo- and exocytosis as well as for cytokinesis during cell division.

In addition to shapes with a single bud, the vesicle can also form shapes with several buds as depicted in figures 16(b1) and (e1) for a uniform membrane and in figures 16(b2) and (e2) for a membrane with two types of domains. Furthermore, necklace-like tubes consisting of several spherical beads connected by membrane necks are also possible, see figures 16(c1), (f1) and (c2), (f2) for uniform and multi-domain membranes, respectively. In the following, buds, which are directly connected to the mother vesicle, and beads, which are connected to buds or other vesicles, will be collectively called spherules.

From the theoretical point of view, the multi-sphere shapes in figures 16(a1)–(f1) are primarily determined by three parameters: membrane area, vesicle volume, and preferred or spontaneous curvature m [98]. In the absence of flip-flops between the two membrane leaflets, the spontaneous curvature contains a nonlocal contribution arising from area-difference-elasticity [100]. Here, I will assume that the membrane contains (at least) one molecular component such as cholesterol that undergoes frequent flip-flops and will, thus, ignore area-difference-elasticity. In the latter case, the spherules have zero bending energy when their radius is equal to \(\frac{1}{m} \), i.e. to the absolute value of the inverse spontaneous curvature. In general, we can distinguish two special classes of multi-sphere shapes: shapes with zero-energy spherules and limit shapes obtained via the closure of open necks. For positive spontaneous curvature, another type of limit shape can be formed consisting of spherules that have the same size as the mother vesicle. The latter case includes linear and branched necklace-like tubes.

The spontaneous curvature can vary over several orders of magnitude, from the inverse radius of the GUV to about \(1/(10 \text{nm}) \) [38], which implies that the size of the zero-energy spherules can vary over the same range. All multi-sphere shapes displayed in figure 16 are stable for certain parameter regimes, which can be determined by examining the stability of the individual spheres and of the membrane necks [97].

Current and future challenges. Some of the shapes in figure 16 have been observed experimentally but these observations have remained fairly accidental. There are several reasons for this state-of-the-art. First of all, no serious experimental attempts have been made, so far, to control all three shape parameters—area, volume, and spontaneous curvature—simultaneously. Indeed, the standard preparation methods based on lipid film hydration and electroformation produce very polydisperse GUVs with a wide range of sizes. In addition, even though we now have a variety of methods to deduce the value of the spontaneous curvature from budded or tubulated morphologies [37, 38, 101], no reference system is currently available for which the spontaneous curvature can be varied in a systematic and controlled manner.

However, the presumably largest challenge for the preparation and observation of multi-sphere vesicles with a certain architecture is the complexity or ‘ruggedness’ of the energy landscape associated with curvature elasticity. Some insight into this landscape can be obtained by a gedankenexperiment in which we produce multi-sphere shapes with an increasing number of spherules by osmotic deflation. To be specific, let us consider a membrane with negative spontaneous curvature \(m < 0 \) that forms an initially spherical vesicle with volume \(V_0 = \frac{4 \pi R^3_{ve}}{3} \) where the overall vesicle size \(R_{ve} = \sqrt{A/(4\pi)} \) is defined in terms of the membrane area A. After deflation, such a vesicle can form a variable number \(N \) of (meta)stable in-spherules with radius \(R_s \). The latter radius is somewhat variable but is always of the order of \(1/|m| \). It is thus convenient to parametrize the spherule radius as \(R_s = \alpha/|m| \) with a dimensionless coefficient \(\alpha \). For \(\alpha = 1 \), the spherules have zero bending energy and are always stable. Deflation of a multi-sphere shape with \(N \) zero-energy spherules increases the spherule radius \(R_s \) until we reach \(R_s = \alpha/|m| \) with \(3/2 < \alpha_s \leq 3 \) as follows from the combined Euler–Lagrange equations for the spherules and the mother vesicle. At this point, the in-spherules become unstable and undergo a sphere-prolate (SP) bifurcation. The precise value of \(\alpha_s \) depends on the radius \(R_l \) of the mother vesicle and reaches the limiting value \(\alpha_s = 3 \) for large \(R_l \).

A vesicle with \(N \) in-spherules of radius \(R_s = \alpha/|m| \) has the volume

\[
V(N, \alpha) = V_0 \left[1 - N \left(\frac{\alpha}{|m| R_{ve}} \right)^2 \right]^{3/2} - N \left(\frac{\alpha}{|m| R_{ve}} \right)^3.
\]

It is important to note, however, that a vesicle with volume \(V(N, \alpha) \) can attain, for fixed values of \(N > 1 \) and \(\alpha_s \), several multi-sphere morphologies as depicted in figures 17(a)–(d) for \(3 \leq N \leq 6 \). Because the spherule radius can vary over a certain range, a vesicle with volume \(V(N, \alpha) \) can also form alternative morphologies with less than \(N \) spherules and a spherule radius that exceeds \(\alpha/|m| \).

Inspection of figure 17 reveals that we can obtain, for each \(N \), a certain number \(|\Omega| \) of distinct morphologies. This number...
increases from $|\Omega| = 3$ for $N = 3$ to $|\Omega| = 11$ for $N = 6$. In fact, for large values of N, the number $|\Omega|$ increases exponentially with \sqrt{N}. Furthermore, for a given membrane area, vesicle volume, and spontaneous curvature, multi-sphere morphologies with the same sphere number N have the same sphere radius R_s and the same curvature energy.

The morphologies depicted in figure 17 can be obtained via two basic shape transformations [37], the nucleation of a new bud via an oblate-stomatocyte (OS) bifurcation and the addition of a new bead to an existing bud or necklace via the afore-mentioned SP bifurcation. Both types of bifurcation are discontinuous and exhibit hysteresis. The OS bifurcation leads to (meta)stable spheres with radius $R_s = \alpha / |m|$ and $1/(2 + \varepsilon) \leq \alpha < 3$ where the lower bound for α depends on the radius R_i of the mother vesicle via the small correction term $\varepsilon = 1/(|m| R_i) \ll 1$ as follows from the neck closure condition. Furthermore, starting from any N-sphere morphology, we can generate several distinct $(N + 1)$-sphere morphologies by either nucleating a new bud or extending an existing bud or necklace. In this way, we can generate the different morphologies by different sequences of OS and SP bifurcations which implies a rather rugged energy landscape. Likewise, when the closed necks of the different N-sphere morphologies are opened up by changes in vesicle volume or spontaneous

Figure 16. Multi-sphere shapes consisting of a spherical mother vesicle to which spheres, corresponding to small spherical buds and beads, are connected via closed membrane necks. The interior aqueous solution is yellow, the exterior one is white: (a1)–(c1) uniform membranes (red) with positive spontaneous curvature form out-buds and necklace-like tubes pointing towards the exterior solution; (d1)–(f1) uniform membranes (red) with negative spontaneous curvature form in-buds and necklace-like tubes pointing towards the interior solution; (a2)–(c2) membranes with two types of intramembrane domains (red, blue) and positive spontaneous curvature; and (d2)–(f2) multi-domain membranes (red, blue) with negative spontaneous curvature.

Figure 17. Morphological complexity emerging from multi-sphere vesicles with N spheres for negative spontaneous curvature $m < 0$: (a) three morphologies with $N = 3$; (b) five morphologies with $N = 4$; (c) seven morphologies with $N = 5$; and (d) eleven morphologies with $N = 6$. For given membrane area, vesicle volume, and spontaneous curvature, all morphologies with the same sphere number N have the same sphere radius R_s and the same curvature energy. The sphere radius R_s can vary between $R_s = 1/|m|$ and $R_s = \alpha_* / |m|$ with $\alpha_* < 3$, see main text. For visual simplicity, all necklaces and buds have been placed into the plane of the figure, and the membrane necks connecting different spherical segments have been omitted.
curvature, we will obtain quite different vesicle shapes which again reveals that each of the $|\Omega|$ distinct morphologies with N in-spherules belongs to a different energy branch.

Repeating the osmotic deflation towards a certain volume $V = V(N, \alpha)$ several times, we will typically find different outcomes for the morphologies. When we reduce the vesicle volume to $V = V(4, 1)$, for example, we can obtain any of the multi-sphere morphologies depicted in figures 17(a) and (b) as well as intermediate morphologies with open necks. Therefore, when we perform such a deflation step many times, for the same initial volume V_0 and the same spontaneous curvature $m < 0$, we expect to obtain a certain probability distribution $P(S_j|V)$ for the accessible multi-sphere shapes S_j. This probability distribution reflects the underlying energy landscape and introduces a probabilistic aspect into the morphology of vesicles.

Advances in science and technology to meet challenges, concluding remarks. Recently, it has become possible to produce large populations of monodisperse GUVs using microfluidic double emulsions [102, 103] or pico-injection of small vesicles into emulsion droplets [104]. Furthermore, it now seems feasible to develop membrane systems for which the spontaneous curvature can be controlled in a systematic manner. Combining both developments, we should be able to produce monodisperse batches of vesicles with the same spontaneous curvature. Subsequent deflation can then produce many multi-sphere morphologies with the same volume $V(N, \alpha)$ as in (3). In this way, it should become possible to actually measure the statistics of the N-spherule morphologies and, thus, the probability distribution $P(S_j|V)$. Finally, it would be rather valuable to develop methods by which we can open and close the necks of multi-sphere shapes in a reversible and controlled manner. We could then develop storage and delivery systems based on these shapes.

Acknowledgments

I thank Rumiana Dimova for the opportunity to participate in this Roadmap and the MaxSynBio consortium, jointly funded by the Max Planck Gesellschaft and the Federal Ministry of Research, Germany, for a stimulating scientific environment.
References

[8] Simunovic M et al 2017 Friction mediates scission of tubular membranes scaffolded by BAR proteins *Cell* 170 172–84

liquid-ordered and liquid-disordered membranes ACS Nano 10 463–74

[38] Lipowsky R 2013 Spontaneous tubulation of membranes and vesicles reveals membrane tension generated by spontaneous curvature Faraday Discuss. 161 305–31

[49] Bashikrov P V et al 2008 GTPase cycle of dynamin is coupled to membrane squeeze and release, leading to spontaneous fission Cell 135 1276–36

[54] Antony B et al 2016 Membrane fission by dynamin: what we know and what we need to know EMBO J. 35 2270–84

[56] Dar S and Pucadyil T J 2017 The pleckstrin-homology domain of dynamin is dispensable for membrane constriction and fission Mol. Biol. Cell 28 152–60

[60] Zhang G and Muller M 2017 Rupturing the hemi-fission intermediate in membrane fission under tension: reaction coordinates, kinetic pathways, and free-energy barriers J. Chem. Phys. 147 064906

[61] Chiaruttini N et al 2015 Relaxation of loaded ESCRT-III spiral springs drives membrane deformation Cell 163 866–79

[64] Xu J et al 2017 Mechanistic insights into neurotransmitter release and presynaptic plasticity from the crystal structure of Munc13-1-C1C2BMU/Elife e22567

[73] Römer W 2007 Nature 450 670

[78] Casimir H B G and Polder D 1948 Phys. Rev. 73 360

Kozlovsky Y and Kozlov M M 2003 Membrane fission: Protein-driven membrane stresses in fusion and fission Trends Biochem. Sci. 35 699–706
Helfrich W 1978 Steric interaction of fluid membranes in multilayer system Z. Naturforsch. 33a 305–15
Yolcu C and Deserno M 2012 Membrane-mediated interactions between rigid inclusions: an effective field theory Phys. Rev. E 86 031906
Lee C and Chen L B 1988 Dynamic behavior of endoplasmic-reticulum in living cells Cell 54 37–46
Nixon-Abell J et al 2016 Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral ER Science 354aaf3928
Lipowsky R 2019 Understanding giant vesicles: a theoretical perspective The Giant Vesicle Book eds R Dimova and C Marques (London: Taylor and Francis) accepted
Agudo-Canalejo J and Lipowsky R 2015 Critical particle sizes for the engulfment of nanoparticles by membranes and vesicles with bilayer asymmetry ACS Nano 9 3704–20
Bhatia T, Agudo-Canalejo J, Dimova R and Lipowsky R 2018 Membrane nanotubes increase the robustness of giant vesicles ACS Nano 12 4478–85
Lipowsky R 2019 Understanding giant vesicles: a theoretical perspective The Giant Vesicle Book eds R Dimova and C Marques (London: Taylor and Francis) accepted
Agudo-Canalejo J and Lipowsky R 2015 Critical particle sizes for the engulfment of nanoparticles by membranes and vesicles with bilayer asymmetry ACS Nano 9 3704–20
Bhatia T, Agudo-Canalejo J, Dimova R and Lipowsky R 2018 Membrane nanotubes increase the robustness of giant vesicles ACS Nano 12 4478–85
[132] Simunovic M and Voth G A 2015 Membrane tension
[134] Simunovic M and Voth G A 2015 Membrane tension controls the assembly of curvature-generating proteins Nat. Commun. 6 7219
[137] Chen Z, Atef E and Baumgart T 2016 Membrane shape instability induced by protein crowding Biophys. J. 111 1823–6
[140] Takeda T et al 2018 Dynamic clustering of dynamin-amphiphsin helices regulates membrane constriction and fission coupled with GTP hydrolysis Elife 7 e30246
[142] Raatz M, Lipowsky R and Weikl T R 2014 Cooperative wrapping of nanoparticles of various sizes and shapes by lipid membranes Soft Matter 10 3570