
Chlamydomonas reinhardtii with the short
name chlamy is a unicellular photosynthetic
alga, see Fig. 1a, which is studied within the
ongoing project GoFORSYS on systems bio-
logy. Large populations of cells are culti-

vated in a fermenter at the MPI of Molecular
Plant Physiology, varying several environmen-

tal conditions such as light spectrum, light inten-
sity, temperature, and nutrient concentrations.

Samples of about one million cells are extracted from the
fermenter to perform measurements that should shed light
onto several aspects of the intracellular activity. As a result
of these measurements, the metabolite concentrations are
obtained as averages over a very large number of cells. 

In general, the cells that contribute to these average
properties differ in their age, size, and molecular composi-
tion. It is, thus, not obvious how these average quantities are
related to the properties of single cells. In order to address
this question, our project considers theoretical models for
cell populations. As shown schematically in Fig. 1b, each cell
undergoes a cell cycle that starts with the growth phase (G1),
passes a commitment point for cell division, and then enters
the other phases necessary for this division.

Fig. 1: (a) Image of one single cell of Chlamydomonas reinhardtii. 
(b) Schematic representation of the cell cycle of a single cell. The phase
denoted by G1 is the growth phase; the other three phases prepare the
cell for division. The phase G0 is a dormant or rest phase.

It turns out, that chlamy cells remain in the growth phase for
a random amount of time and thus attain a relatively broad
distribution of cell sizes. This implies that each mother cell
can produce a number of daughter cells roughly proportional
to its size and, thus, can undergo multiple divisions.

One global property of each cell is its volume which
should determine the overall rate of energy consumption. Our
first objective was therefore to develop a model for the cell
size distribution under time-independent conditions   that
may be implemented in the fermenter. The model can be
used to calculate stationary distributions, two examples are
shown in Fig. 2 corresponding to binary and multiple 
divisions.

Fig. 2: Probability density for the cell volume under constant light condi-
tions in units of the minimum volume v0 of a viable cell. The two plots,
computed with our model, compare two possible distributions assuming
either binary divisions with two daughter cells or multiple divisions with
more than two daughter cells as observed for chlamy cells.

Another set of experiments is performed by Martin Steup at
the University of Potsdam, in which cells are synchronized by
fixed periods of light and darkness. The cells are grown in a
special medium that does not allow cell growth in the dark-
ness. Synchronisation relies on the fact that, under certain
general conditions, all cells would divide after the start of
the dark period and the daughter cells would start to grow
only when light is turned on again. By diluting the cells to a
fixed density at every start of the light period and by re-
newing the cultivation medium, it is possible to observe the
population over a long period of time under the same set of
conditions.

This set-up has the advantage that both the average
growth rate of the cells during the light period, the number of
cells in the cultivation and, to a certain extent, the number of
cell divisions can all be observed simultaneously. Moreover,
during these synchronisation experiments, in which both the
light and the dark periods typically last twelve hours, one can
easily measure the cell size distribution of the cells. Our
current aim is to adapt our model to predict the cell size
distribution at the beginning of the light period.
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Life Cycle of Chlamy Cells

NETWORKS IN BIO-SYSTEMS



Activity Patterns on Networks
The biosphere contains many networks built up from rather
different elements such as molecules, cells, or organisms. In
spite of their diversity, these networks exhibit universal fea-
tures and generic properties. The basic elements of each net-
work can be represented by nodes or vertices. Furthermore,
any binary relation between these elements can be described
by connections or edges between these vertices.

By definition, the degree k of a given vertex is equal to
the number of edges connected to it, i.e., to the number of
direct neighbors. Large networks containing many vertices
can then be characterized by their degree distribution, P(k),
which represents the probability that a randomly chosen ver-
tex has degree k.  Many biological networks are found to be
scale-free in the sense that their degree distribution behaves as

P(k)~1/k g for k.k 0

which defines the scaling exponent g. Another structural
property of networks is their assortativity and dissortativity.
Networks are assortative or dissortative if vertices with large
degree are primarily connected to other vertices with large or
small degree, respectively. Biological networks tend to be
dissortative. 

Fig. 3: Graphical representation of the neural network of C. Elegans. 
The vertices correspond to sensor (S), Inter (I), and motor (M) neurons;
the edges represent chemical links via synapses and electrical connec-
tions via gap junctions. The input signal is received by the S neurons,
processed by the I neurons, and eventually transmitted to the 
M neurons.

In general, the elementary units or vertices of biological net-
works are dynamic and exhibit various properties or internal
degrees of freedom that evolve with time. A more detailed
description of the network is then obtained in terms of
dynamical variables that are defined for each vertex of the
network. Two examples for such dynamical processes are
provided by genetic networks that exhibit a changing pattern
of active and inactive genes as well as by neural networks

that can be characterized by firing and nonfiring neurons. A
relatively simple example for a neural network is shown in
Fig. 3 corresponding to the 302 neurons of the worm C. Elegans.

In general, the dynamics of each vertex is determined 
by the local interactions of this vertex with its neighbours.
One instructive example is provided by local majority rule 
dynamics which is defined as follows: If, at a certain time,
most direct neighbors of a certain vertex are active or inac-
tive, this vertex will become active or inactive at the next
update of the pattern.

If one starts with a certain pattern of active and inactive
vertices, the synchronous update of all vertices according to
their local rules determines the time evolution of the activity
pattern on the whole network, see Fig. 4. For long times, all
activity patterns evolve towards one of the attractors (fixed
points, limit cycles, etc) of the global dynamics.

Local majority rule dynamics has always two fixed points
corresponding to two completely ordered patterns, the all-
active pattern and the all-inactive one. In fact, for random
scale-free networks without degree-degree correlations,
these two fixed points are the only attractors of the dynamics
as has been shown in previous studies. [1]

Fig. 4: Time evolution of activity pattern towards an attractor that
switches back and forth between the two patterns for t = 3 and t = 4. In
each panel, the vertices are arranged according to their degree starting
with the smallest degree in the upper left corner and ending with the
largest degree in the lower right corner. 

This situation changes drastically for majority rule dynamics
on scale-free networks with degree correlations. In the latter
case, the activity patterns are governed by a large number of
attractors. One example corresponding to a limit cycle of
period two is displayed in Fig. 4. In fact, dissortative scale-
free networks have the interesting property that the number
of attractors exhibits a maximum as a function of network
size. [2]
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