
Molecular Motors as Semi-Markov
Chains
Kinesin is a complex molecular machine
whose properties have been studied in
great detail both theoretically and experi-

mentally in our department [1, 2]. When we
experimentally observe a kinesin molecule

walking along a filament, we see a series of for-
ward and backward steps, whose relative frequency

depends on the availability of ATP, the fuel of this motor. A
more detailed analysis reveals, however, that the steps of
the kinesin motor are more complex. In fact, both the proba-
bility of a motor to make a step forward or backward and the
time that it takes to perform one of these steps depend on
whether the motor had previously performed a forward or
backward step. A detailed analysis of these different proba-
bilities was done in [3], where we showed that the motor’s
displacements should be described in terms of pairs of steps,
such as bf which means a step backward followed by a step
forward. It turns out, therefore, that there are four such
states indicated as {ff, fb, bf, bb}. In this representation, the
motor is described as a stochastic chain in continuous time
over these four states with the property that the dwell times
are not exponentially distributed. These chains are called
semi-Markov chains. Since the dwell times on these four
states are also experimentally accessible and this level of
description may apply to a large class of motors, we want to
develop a mathematical framework to analytically compute
several properties that are also easily accessible experimen-
tally. This project is performed in collaboration with Prof
Sylvie Rœlly at the University of Potsdam.
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Models for Translational Control
Translation of the messenger RNA (mRNA) is a key process in
cell biology. The process of translation is performed by ribo-
somes, which are molecular machines walking unidirectional
on the mRNA while synthesizing the proteins. The amount of
proteins produced by each mRNA depends therefore on the
number of ribosomes on it, which depends on the initiation
rate, on the speed by which the ribosomes move along the
chain, and on the termination rate. Finally, the number of
ribosomes depends also on the life time of the mRNAs. Our
work is mainly concerned with the bacterium E. coli. Experi-
mentally, in collaboration with Prof Zoya Ignatova at the Uni-
versity of Potsdam, we are determining the number of ribo-
somes on certain mRNAs and we are preparing the samples
for a ribosomal footprinting over the whole set of mRNAs in
this organism. From the theoretical side, we have found out

that the kind of mRNA degradation pathways in E. coli cells
has some effect both on the number of ribosomes and also on
the rate of protein synthesis and that this effect is stronger
for longer mRNAs [4, 5, 6]. In our theory, simple models of
mRNA degradation have shown that some differences in the
process of degradation can have dramatic effects on the
translation rate (see Fig. 1). We are therefore developing
more complex models based on the available knowledge
about the degradation process in order to finally understand
the role of degradation on the rate of protein synthesis [7]. On
the other hand, under certain circumstances the tRNAs nec-
essary to perform the translation can become particularly
rare and thus slow down the ribosomes at certain positions
along the mRNA [8]. We are thus developing a model to take
properly into account the effective concentrations of all
tRNAs and thus predict the local speed of the ribosomes and
compare these results with the experimental footprinting.

Fig. 1: Schematic diagram of mRNA translation at different times. The
two chains have the same length but differ in the number of loaded ribo-
somes. The upper chain is young and has only few ribosomes that are
close to the initiation region. The chain at the bottom is older and thus is
loaded with more ribosomes. The arrow indicates the direction of
motion of the ribosomes. If mRNA turn-over is very rapid, some mRNA
may be degraded before producing any protein.
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Life Cycle of Chlamy Cells 
Chlamydomonas reinhardtii (chlamy) is a unicellular photo-
synthetic alga that is studied within the ongoing systems
biology project GoFORSYS, in collaboration with the Univer-
sity of Potsdam and the MPI of Plant Physiology (MPIMP).
Chlamy cells have the special property that they remain in
the growth phase for a random amount of time and attain, at
a population level, a relatively broad distribution of cell sizes.
One consequence is that each mother cell can produce a
number of daughter cells that is roughly proportional to the
logarithm of its size (see Fig. 2). Since cell volume is often
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considered as a proxy for the cellular metabolic state, the
first objective is therefore to develop a model for the cell size
distribution under time-independent conditions such as those
found in the bioreactor at the MPIMP. The model can be used
to calculate and compare stationary distributions for the
common binary and the multiple division processes [9].

We have also addressed another set of experiments that
were performed in the labs of Prof Martin Steup at the Uni-
versity of Potsdam. In these experiments, the cells are syn-
chronized by fixed periods of light and darkness and are
grown in a special medium that does not allow for cell
growth in the darkness. Synchronization relies on the fact
that, under certain general conditions, all cells would divide
after the start of the dark period and the daughter cells
would start to grow only when light is turned on again. These
experiments allow determining the relationship between the
cell size and the number of daughter cells as well as the cell
growth rate and the timing of DNA replication. Our current
aim is to use our model to predict the cell size distribution at
the beginning of the light period.

Fig. 2: Multiple cell division. Two twin cells grow in volume over time
but one cell divides earlier than the other. The first dividing cell (light
green) is relatively small at division time and produces only two daugh-
ter cells. The cell that divides later (dark green) attains a larger volume
and can divide in four daughter cells. In the cell culture, one can observe
also large mother cells producing up to 32 daughter cells.
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Patterns on Complex Networks 
In this research activity, we consider networks as collections
of points, called vertices, connected by bi-directional links,
sometimes also called edges. Random networks are those
networks in which the number of edges connected to any

randomly chosen vertex, which is called the degree of the
vertex, is a random variable that follows a given distribution.
This distribution is called the degree distribution of the net-
work. A special subset of these random networks is given by
those characterized by a power law degree distribution. Ran-
dom networks are sometimes called complex networks and
all known complex networks have a direct or indirect biologi-
cal origin. Prominent examples are food webs, as well as
social and neural networks.

In general, the vertices of biological networks are
dynamic and exhibit various properties or internal degrees of
freedom that evolve with time. A proper description of the
network is then obtained in terms of dynamical variables that
are defined for each vertex of the network. In a neural net-
work, for instance, the vertices represent firing and nonfiring
neurons and thus switch between an active and an inactive
state depending on the signals that arrive from the neurons
connected to them.

In general, the dynamics of each vertex is determined by
the local interactions of this vertex with its neighbors. One
instructive example is provided by local majority rule dynam-
ics which is defined as follows: If, at a certain time, most
direct neighbors of a certain vertex are active or inactive, this
vertex will become active or inactive at the next update of
the pattern. One interesting question concerns the result of
the update rule once it is repeated many times over the
whole networks. In particular, we would like to estimate the
number of attractors of the dynamics. We have found out
that the knowledge of the degree distribution alone is not
sufficient to provide a general answer. Indeed, it turns out
that the degree-degree correlation between the vertices
plays a major role.

It is perhaps for this reason that most naturally occurring
networks have either positive or negative degree-degree cor-
relation. In both cases, the activity patterns are governed by
a large number of attractors. In fact, we have found out that
in dissortative scale-free networks the number of attractors
exhibits a maximum as a function of network size [10], while
in assortative networks the number of attractors steadily
increases with network size [11]. We have indeed found out
that the structure of the network takes a peculiar nested
form that depends on whether the degree correlation is posi-
tive or negative. This structure can be visualized in terms of
partially connected subnetworks or layers of different size
whose dynamics can be compared with that of Ising models
in different dimensions [12].
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