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Adhering vesicles with osmotically stabilized volume are studied with Monte Carlo simulations and optical microscopy.
The simulations are used to determine the dependence of the adhesion area on the vesicle volume, the surface area,

the bending rigidity, the adhesion energy per membrane

area, and the adhesion potential range. The simulation results

lead to a simple functional expression that is supplemented by a correction term for gravity effects. The obtained
equation provides a new tool to analyze optical microscopy data and, thus, to measure the adhesion energy per area

by analyzing the geometry of the adhering vesicle. The

method can be applied in the weak and ultra-weak adhesion

regime, where the adhesion energy per area is below X@¥. By comparing the shapes of adhering vesicles with
different reduced volumes, the bending rigidity can be estimated as well. The new approach is applied to experimental
data for lipid vesicles on (i) an untreated and (ii) a monolayer-coated glass surface, providing ultra-weak and weak

adhesion strength, respectively.

Introduction

All forms of life are based on the principle of screening small
spatial regions from the chemical conditions of the surrounding.
Living cells are enclosed by a lipid membrane that is impermeable

for most larger molecules. On the other hand, lipid membranes

can be penetrated by water molecules and due to their fluidity
they can adapt to steric constraints imposed by the environtnent.

Many mechanical and chemical membrane properties can also

be studied on vesicles, which solely consist of a closed lipid
membrane. In spite of their comparably simple composition,
vesicles allow the study of phenomena like budding transifidns,
fusion® and fissior?

The adhesion behavior of cells and vesicles is of great relevanc
for a fundamental understanding of cell interaction as well as for
biotechnological applications like implantation materiats
biosensor&in which cells are in contact with electrodes. In many

cases it is important or even essential to know the adhesion

energy per membrane ar&¥ between vesicle and substrate.
There are only a few experimental methods to meagurgor

microscopy to study the adhesion process of a vesicle and
extractedVfrom the spreading dynamics of the adhesion Z8ne.
The method requires an observation starting from a non-
equilibrium configuration of the adhering vesicle, which is
typically rather difficult to prepare. The analysis of the measure-
ments is based on a theory for the wetting behavior of liquid
droplets. The assumption of a spherical cap geometry restricts
the method to large adhesion strengths, where the bending rigidity
is negligible.

In a different approach, Lai et al. used cross-polarizer and
reflectance interference microscopy to measure the adhesion area
radius and the mid-plane diameter of an equilibrated vesicle

eadhering to a pure glass substr&telhe pure glass surface

provides a weak adhesion so that the bending rigidity is relevant
and the shape of the vesicle deviates significantly from that of
a spherical cap? Ignoring this discrepancies, one can apply an
elasticity theory for spherical cap geometries to extract an estimate
of the adhesion strengif.

The adhesion strength can roughly be divided into two

vesicles aspirated by a micropipet, the adhesion energy can bgegimes!? In the strong adhesion regimgV(> 10°° J/n¥),

extracted from the relation between the suction pressure and thebending rigidity is negligible and the vesicle has the shape of
corresponding adhesion are¥Since the mechanical treatment ~ a spherical cap, which is basically determined by the membrane
may cause a damage on the vesicle that hinders subsequerarea and the volume of the vesicle. In the weak adhesion regime
investigations, purely optical measurement techniques are (W <10 %J/n?), the shape of the vesicle results from the interplay
preferable. Bernard et al. have used phase contrast microscopyetween adhesion and bending energy. Therefore, in the weak
in combination with evanescence wave-induced fluorescenceadhesion regime, adhesion strength and bending rigidity can be
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extracted from an analysis of the vesicle shape. In many
experiments the vesicle adheres to an untreated, pure glass
substrate. As shown in Figure 1a, the shape is far from a spherical
cap geometry, indicating a low adhesion strength. The contact
radiusR., which is the radius of the vesicle contour close to the
adhesion zone, is roughly of the order of. If the bending
rigidity « is known, a first estimate of the adhesion strength can
be made by using the relatio = «/(2R:?), which has been
derived for vesicles adhering to a contact potedfidith « =

10T, whereT is the thermal energy, including the Boltzmann
constankg, we find that the adhesion strength for a vesicle and
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Figure 1. (a) Optical micrographs of two vesicles adhering to a pure glass substrate, which reflects the vesicle shapes. (b) From the large
vesicle we extract the contour, which includes all relevant geometric properties: the total surface area, the reduced volume, and the base
area. Using eq 14, the adhesion strength can be measured. The shown vesicle with a bending #gidifyhas a reduced volume =

0.87 and a reduced adhesion strengtk: 5.8. (c) Typical configuration from a vesicle simulation with= 0.9 ,w = 6.1, and« = 10T.

a pure glass substrate is of the ordeMdt= 107°—10"8 J/n? study, the adhesion behavior of thermally fluctuating vesicles

and lies in the range of ultra-weak adhesion. with an osmotically stabilized volume is investigated systemati-
In this paper we present relations between geometrical andcally for the firsttime, using a set of 400 extensive MC simulations.

material properties of adhering vesicles, which are obtained from A priori, no assumptions are made about the shape or the symmetry

Monte Carlo simulations and analytical estimates. The derived properties of the vesicle. The observations are used to derive a

equations can be used to analyze optical microscopy images infunctional relation between the adhesion area, the vesicle volume,

order to obtain the adhesion strenglthThe method can be used  the bending rigidity of the membrane, the adhesion strength, and

for weak and ultra-weak adhesion strengths. Especially for ultra- the adhesion potential range.

weak adhesion strength, our method avoids the systematic errors In addition, this paper also describes the results of a first set

arising from the assumption of a spherical cap geometry. The of experimental observations in which contour images of 17

required experimental effort of our new method is comparably adhering vesicles have been measured with optical microscopy.

small. In afirst set of experimental measurements, the new methodTwo types of substrates have been chosen in order to realize

provides reasonable results for weak and ultra-weak adhesionweak and ultra-weak adhesion strength. Images of the adhering

strengths. vesicles have been analyzed with the help of the simulation-
In many experiments, the mass density inside the vesicle differsbased relations (see Figure 1). The analysis provides values for

from that outside, which provides an effective adhesion strength the adhesion strengths and an estimate of the bending rigidity.

modified by gravity effects. We present a correction term for

these latter effects, which is typically neglected in adhesion Geometric Membrane Model

strength measurements and turns out to be important for the case The simulations are based on the geometric membrane model

of ultra-weak adhesion. By comparing the shapes of adhering discussed in ref 13. We assume that the spontaneous curvature

vesicles with different volumes, the bending rigiditycan be Mo is negligibly small and that the Gaussian curvature is not

estimated as well. relevant since the vesicle does not change its topology. Then the
The new approach is based on arelation between the geometrylastic curvature enerdse and the adhesion energyg can be

and the material properties of an equilibrated adhering vesicle. expressed a&

For small thermal fluctuations, corresponding to the limit of low

temperaturd, the contour of adhering vesicles is determined by _kK 2 _

a set of differential equations that can be solved numeriéally. Boit By = 2 f Sees dA(2M)” = Whyq (1)

At finite temperature, Monte Carlo (MC) simulations can be . . . o

used to obtain equilibrium properties of adhering vesicles. WhereSesis the vesicle surfaca; is the bending rigidity, and

Recently, we presented a simulation-based study of the adhesio IS the local mean curvature. The adhesion potential between

of vesicles with variable volume (i.e., which do not experience @ Planar homogeneous substrate and a vesicle is approximated

any constraint on their volumé3.In general, the volume of byasguare-wgll potential, which is defined by its potential range

vesiclesisinfluenced by so-called “osmotically active” molecules dandits adhesion eneryyy> 0 per membrane area. The adhesion

inside and outside the vesicle, which are too large to penetrate@r€@Aad is defined by those membrane patches that have a

the membrane. The case of variable volume, studied in ref 14, Séparation with | < d from the substrate surface.

corresponds to the absence of osmotically active molecules. If ~ Since the lipid bilayer is permeable for water molecules, the

the density of osmotically active molecules inside and outside Volume V of a vesicle can change, while the numiés of

the vesicle is high, the vesicle volurkdluctuates only weakly osmotl_c_ally active particles |nS|d_e the vesicle stays constant. For

around an equilibrium volum¥,. Many equilibrium shapes of ~ @ sufficiently large concentratiopo of osmotically active

adhering vesicles with osmotically controlled volume differ Molecules outside the vesicle, the osmotic energy is given by

significantly from the equilibrium shapes of vesicles with T

variableV. E ~ pL(V Y )2 2)
Osmotically induced volume stabilization is often applied in 2V, 0

vesicle experiments because it resembles the conditions in

biological cells and it simplifies the shape analysis. In the present WithVo = Nin/po.
During the simulation, the membrane are#s kept constant

(14) Gruhn, T.; Lipowsky, RPhys. Re. E 2005 71, 011903. up to small fluctuation$AA| < 0.01A , which are necessary to
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Figure 2. Relative adhesion area= A,4/A of an adhering vesicle
with stabilized volume as a function of the rescaled temperdture
for a rescaled potential rangke= 0.06. For the adhesion strength
w = 20 simulation results for reduced volumes- 0.41 (»), 0.49
(©),0.57 (), 0.65 (7), and 0.730) are shown. Fow = 6.3 results
are shown fow = 0.56 (#), 0.7 @), 0.78 (v), and 0.88@®). Lines
show solutions of eq 11.

0.06  0.08 0.1

sample the configuration space in an efficient way. Usiagd
the lengtlR = v A/4z, we define the dimensionless temperature
and adhesion strength quantities via

T=Thk (3)
and
w = WR/k (4)
Furthermore, we also use the dimensionless quantities
d=dR (5)
v = 3VI(4nR®) (6)
o= AdA ©

Spherical vesicles have radiBsind reduced volume= 1. The
molecular concentratigm =5 x 10* R3is chosen small enough

to ensure an adequate sampling of the configuration space. For
the analysis of the simulation data, the measured equilibrium

volumesy are used, which deviate less than 2% frogee 3Vo/
(47R3).
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Figure 3. Relative adhesion arag in the limit of temperaturd

= 0 as a function of the rescaled vesicle volumeValues are
extrapolated from results of simulations with a rescaled potential
ranged = 0.06. Lines show the relative adhesion area of a spherical
capasgc (+++) and fits of ap (—).
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Figure 4. Quotient of the relative adhesion aregV) in the limit

of temperaturel = 0 and the corresponding spherical cap value
as{V) increases nearly linearly with the rescaled vesicle volume
The symbols correspond to the results shown in Figure 3.

osmotically stabilized volume. As shown in Figure 2, the reduced
adhesion aree is again linear inl so thata can be written as
8)

o~ ag(v,w,d) + Touy(v,w,d)

with ay < 0. It is noteworthy that quantities such asA, and

In the MC simulations, the vesicle is represented by a wcan depend on temperature as well. In this case, eq 6 and all
triangulated model system building a polygon with interconnected other equations are still valid, but can become a nonlinear
vertices!® Four hundred simulations with 1,2 10 MC sweeps function of T. .
were performed for a vesicle model with 1280 triangles, half of  Alinear extrapolation oft towardT = O provides, as shown
the sweeps were used for equilibration. Each sweep consists ofin Figure 3 ford = 0.06. It is instructive to comparg, with the
1280 tentative vertex moves and 3840 edge flip attempts. A relative adhesion areas{v,d) of an adhering vesicle with a
detailed description of the simulation method is given in ref 14 spherical cap geometry, which is the limiting case for large
for vesicles with variable volume. As shown in the Appendixqsc is determined by

Simulations were performed systematically for reduced

temperatures 0.025 T < 0.1 and volumes 0.4 v < 0.925;

adhesion strength and potential range were varied in the ranges 01

5.0 < w < 500.0 and 0.0% d < 0.09.

Parameter Dependence of Reduced Adhesion Araa. In
a first step, we investigate the temperature dependenceas
defined in eq 7, ifw, «, d, andy are fixed. Considering small

fluctuation modes around the ground state of an adhering vesicle,

itwas predicted in ref 14 thatdecreases linearly with increasing
temperaturel. The validity was shown for adhering vesicles

All - aﬁa
sc aba + 2u (9)
where

Oy = cos(%arccos(l— 29| — % (10)

with variable volume. In the new set of simulations, discussed iS the ratio between the circular base afgaand the total area
here, we investigated the adhesion behavior for vesicles with anA- Figure 4 shows thato/oscis approximately a linear function

(15) Gompper, G.; Kroll, D. MPhys. Re. Lett. 1994 73, 2139.

of v. More generallypo/asc can be fitted by a linear expression
in v, w12 andd. Similarly, the coefficienty;, as introduced in
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eq 6, can be fitted by a linear combination:ofv?, w~/2, and
d. As a result, one obtains

a=ad+ T — (g + 14022 (1)
Vw
with
f,=0.75+ 0.2& + 0.&d (12)
and
f,=—-0.8+22s(1— )+ 25 (13)

The dependence amis taken into account by a term proportional
to w2 in analogy to the adhesion behavior of a vesicle with
variable volumé#Equations 9-13 can now be used to determine

the adhesion strength and the bending rigidity for an adhering

vesicle from experimental data.

Extracting Adhesion Strength and Bending Rigidity. If «
andd are known, the adhesion energy per akézan be obtained
from eq 11 as

WA_
Ak

0.55 ok + 14T )2 (14)
W= fole

(oedp — ) + 1, T

by measuringh, Aqg, andV of one adhering vesicle. The largest
contribution to the errabw arises from the erra¥a. of measuring
o

oW _ dwda _ 2vw

S =0
w - da w 0.550,+ 1.4T) ¢

(15)

A higher accuracy fow and measurements of other quantities

Gruhn et al.

For simplicity, we considet = 0 and a spherical cap geometry
for the vesicle. Then, the gravitational energy is given by

Apng
E,= Ap,g fvsc zdv= ﬁA(A —2A,) (18)
with the gravitational acceleratigr= 9.81 ms2. We now assume
thatAqqis changed by an amountA,q while V is kept constant.
The restriction to spherical caps leads inevitably to a small change
AAof A, butin most caseadA/Ais distinctly smaller thathAqd/
Aad. NeglectingAA, the change oEg can be written as

AE, ~ —WAA, (19)
with
gAApp,
i (20)

in analogy with the adhesion enerByyin eq 1. This means, a
small influence of gravitation acts like an extra contributitig
to the adhesion energy. Consequently, the valu&\fobtained
from eq 14 is a sum

W = Woq + W, (22)
of the net adhesion energy per ar®éq and the gravity
contribution Wy. If vesicles with different values oA are
compared, eq 17 must be corrected as well and now has the form:

(€3]
—g —

1.2l

@
(Q(Z))2 _ L
1.2l

Mag

(N2 _
ot QM) (22)

Experimental Section
The approach described above is now applied to adhering giant

can be achieved by analyzing the adhesion behavior for variousesicles studied by optical microscopy. We explored two adhesion

vesicle volumes. The vesicle volume can be controlled by the

concentrationoy of osmotically active molecules outside the

vesicle. Alternatively, several adhering vesicles with different

v can be compared. In the following, we refer to the latter method.
We consider two adhering vesicles (1) and (2) with identical

values forw, T, d, andx. The volume of vesiclei) is denoted

by VO with i = 1, 2. With

0]

Qi) = (AM) 22 O + 1.4T 16
N (0 10 — Oy + fOT
sc '0 1
one has
1 ;/;/m =Q¥=q" 17)

The second equality in eq 17 is a quadratic equation gince
fo, f1, andagc are linear functions iu, it is also a cubic equation
in d. If neitherd nor « is known, they can both be obtained by
using eq 17 for three or more vesicles. The solutions found for
d and« can be inserted into eq 14 to obtai

Gravity Effects. Up to now the influence of gravity has been

strength regimes using two different substratesth weak and with
ultra-weak adhesion strength. In order to realize weak adhesion, we
used the electrostatic interaction between negatively charged vesicles
and positively charged surfac¥sThe ultra-weak adhesion regime
was studied with the same type of vesicles on a pure, untreated glass
surface. The positively charged surfaces were prepared as described
in ref 16. Briefly, glass cover slips were exposed to subsequent
vapor deposition of chromium and gold of 25 nm final thickness.

A self-assembled monolayer of the aminoalkanethiol HS¢G¥HI,
(Dojindo Molecular Technologies, Inc, USA) is formed by immersing
the coated surface in 0.1 mM solution of the aminoalkanethiol for

1 h1” The surface becomes positively charged in agueous solution
while the non-coated glass surface is negatively charged. The
negatively charged membranes of the giant vesicles were 9:1 mixtures
of DOPC (dioleoylphosphatidylcholine) and DOPG (dioleoylphos-
phatidylglycerol) from Avanti Polar Lipids. Using the method of
electroformation, the vesicles were grown in 220 mM sucrose solution
and subsequently diluted in isotonic glucose solution resulting in a
mass density difference of about 12.5 g/L. The vesicle solution was
then transferred to an observation chamber, consisting of two glass
cover slips sandwiching H-shaped Teflon spacer. The chamber is
closed by the studied substrate (positively charged or pure untreated
glass surface) that forms the bottom of the chamber. The two cover
slips, sandwiching the Teflon spacer, allow side-view access into
the chamber. The observation was performed with a horizontally

neglected. However, in many experiments the osmotically active mounted microscope in phase contrast mode. After introducing the
molecules inside the vesicle are heavier than those outside of itvesicle solution in the chamber, the vesicles are allowed to settle

so that the mass density differertpr, > 0 pushes the vesicle  on the studied surface located at the chamber bottom. Snapshots of
to the bottom substrate. This has two advantages: The different
refraction indices inside and outside the vesicle amplify the
contrast, and the vesicle can be found more easily, since it is
located at the bottom substrate.

(16) Lipowsky, R.; Brinkmann, M.; Dimova, R.; Franke, T.; Kierfeld, J.; Zhang,
X. J. Phys. Condens. Matt&005 17, S537.

(17) Zhu, M.; Schneider, M.; Papastavrou, G.; Akari, S:iwald, H.Langmuir
2001 17, 6471.



Measuring Adhesion Energy of Vesicles Langmuir, Vol. 23, No. 10, 26a27

20
100 Q
_________________________________ L -
— a a (W, ) B e
‘?E a o °
4 @)
S A ot B v E o »
— oo 222 W S o T TG00 - T
~ a ®A ad!
= R .
® 0 wy 5 i -
AN Wy A
01f , . . . . . .
07 075 08 08 09 095 1 0

07 075 08 085 09 095 1
\

Figure 6. Bending rigidityx divided by temperatur€as a function

of reduced volume. Filled symbols refer to vesicles on a pure glass
substrate, showing ultra-weak adhesion. Open symbols refer to
vesicles on a weakly adhesive, coated substrate. Aver@agEs
over the respective data points are denoted by horizontal lines for
weak (- - -) and ultra-weak adhesiofr). Results measured in ref
24 from flickering modes ¢---) and electric deformatiort{) are
shown for comparison.

A

Figure 5. Effective adhesion strengt.sand net adhesion strength
W,q divided by temperatur€ as functions of the rescaled volume
Filled symbols refer to vesicles on a pure glass substrate; open symbol
refer to vesicles on the substrate coated with a positively charged
monolayer. Horizontal lines denote averages over the respective
data points, i.e [Wad(—) andW+(-++) for membranes on a pure
glass substrate amil/,q =~ W (- - -) for membranes on the coated
substrate.

vesicles of different sizes were taken and their contours determined.
We investigated 10 vesicles on the pure glass substrate, causing
ultra-weak adhesion, and 7 vesicles in contact with the weakly
adhesive substrate.

Adhesion Strength Applying eq 22 to all pairs of vesicles, optimal
values forl#Oand [dare determined numerically for weak and
ultra-weak adhesion strength, respectively. With these values the
effective adhesion enerdVerand the net adhesion ened§ywere
obtained as shown in Figure 5. Even though the data are relatively
scattered, the values for the two different substrates are clearly
localized around two very distinct values Bk

Using eq 15, we can estimate the expected spreading of the data
points. For the ultra-weak adhesion we find &/ We < 12.50/

o. If ais measured with an accuracyb5% , the absolute deviations

of the Wef data from the true value should be smaller tHe68%, Figure 7. Spherical cap with height, base aredys, total area
which corresponds to the observed spreading of the data points. The='a, . + A, potential rangel, and adhesion arefy = Apa + Aqg.
error range for the average value over the 10 valuedigfshould The spherical cap approximation is used to analyze the limit of
be smaller by a factor of /10, resulting inWeg(= 5.5T um 2 + negligible bending rigidity and to estimate gravity impacts on the
1.1T um~2. According to eq 15, the error range fd.; with the adhesion behavior.

weakly adhesive substrate could be four times larger than for the
pure glass substrate. In practice, valued/gifor the weakly adhesive 12 for a vesicle with a DMPC membrane, adhering to a pure glass
substrate spread abati60% around the average value. Taking this substrate. Their result is a factor of 2 smaller than the adhesion
as the standard deviation, the average value for the seven weaklystrength we found for our DOPEDOPG vesicles adhering to a
adhering vesicles is given By = 61T um~2 & 15T yum2 pure glass substrate. Beside the different materials, one should note
The data points obtained faverandWg are used to calculai®yg thatthe adhesion energies measured in refs 11 and 12 include effective
= Wt — Wq. Therefore W,q is exposed to two additional sources  contributions from fluctuation-induced repulsion, while in our case
of error that affectWg. On the one hand, eq 20 is based on the the pure material propertW,q is extracted from the fluctuating
aSSUmption that the influence of gravity is Sma", while it turns out vesicle. The measured values \0f are summarized in Table 1,
to be comparable to the ultra-weak adhesion strength. On the othelincluding the range of adhesion strengths measured between two
hand, the Osmolarity ofthe thernal solution may be S||ght|y different vesicles aspirated by m|cr0p|pé{§'he vesicles, which were studied
between the observed vesicles. As a general result we find that thein an electrolyte solution, consisted of neutral phosphatidylcholine
impact of gravity is negligible for vesicles adhering to the oppositely (pC) lipids and a small amount of negatively charged phosphati-
charged monolayer while it plays an important role for the ultra- dyiserine (PS) lipids. Adhesion strengths in the range 0f300-5

weak adhesion on pure glass. _ Jin? were achieved by varying the charge density of the lipid

Only a small number of previous studies have been devoted t0 membranes.
the measurement of vesicle adhesion strength. Since there is a large
number of membrane compositions and substrate materials, it isdi
difficult to find data sets that are directly comparable. Our
measurements for vesicles adhering to the oppositely charged
monolayer are approximately comparable with experimental results
presented inref 11. Investigating a vesicle with a negatively charged
egg—phosphatidylcholine membrane adhering to a glass substrate
coated with a positively charged indiurtin oxide monolayer, they
measured the adhesion strenith= 1.4 x 107% J/n? , which is a
factor of 4-5 larger than our result for weak adhesion. Considering _ (18) Faucon, J. F.; Mitov, M.D.; Méard, P.; Bivas, |.; Bothorel, R. Phys.
the different materials, it is reassuring that both results are Fr. 1989 50, 2389, ©

. ’ . . (19) Evans, E.; Rawicz, WPhys. Re. Lett. 199Q 64, 2094.

approximately of the same order of magnitude. The same applies (20) Rawicz, W.; Olbrich, K. C.; Mclntosh, T.; Needham, D.; Evan®igphys.
to the adhesion strengtly = 5 x 107° J/n? that was found in ref J.200Q 79, 328.

Bending Rigidity. By comparing several adhering vesicles with
fferent volumes, eq 22 provides a new method to estimate the
bending rigidity. In the literature, several methods for measuring
can be found. The bending rigidity can be extracted from the thermal
fluctuation spectrum of the vesiéfeor by analyzing a vesicle
aspirated into a micropipé®:2°Furthermore, it can be obtained from
'the geometry of thin lipid tethers pulled out of the vesicle
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Table 1. Bending Rigidities and Adhesion Energies Per Area

KT W[107°J/n?] lipid material adhesion material measurement technique
10 10 DOPC:DOPG (9:1) pure glass substrate described in this article
10 300 DOPC:DOPG (9:1) aminoalkanethiol monolayer described in this article
5 DMPC pure glass substrate interference micros€opy
1400 EPC polylysine-coated surface fluorescence microdtopy
10-10¢ PC:PS (100:67) second vesicle (same composition) micropipéttes
100 DMPC latex sphere optical trép
5.3 DOPC flickering spectroscoffy
15 DOPC electric deformatiéh
membran&-22or from the deformation of the vesicle in an external experimental effort of the method. A comparison of adhering
electrical field? _ vesicles with different volumes gives an estimate of the bending
We define the quantity rigidity « without any additional measurements. It will be
, , interesting to apply our method to vesicles with cholesterol, which
- ne WY - wp is k bstantially i he bending stiffness of lipid
D. = |(Q)? — Q)2 — —2 i (23) is known to substantially increase the bending stiffness of lipi
L 1.2k membranes. Work in this direction is in progress.
for a pair of adhering vesicles with the same adhesion strength. Appendix: Spherical Cap Geometry

According to eq 22D; should vanish for the correetandd. Let . . . .
Nbe the number of vesicles studied for the same adhesion conditions. !N the following, some geometrical properties of the spherical

We then look for values of andd which minimize the expression ~ ¢ap are analyzed in order to prove egs 9 and 10, which provide
arelation between the reduced adhesion ageand the reduced

NN volume v for a vesicle with a spherical cap geometry.
ZZDij (24) We consider a spherical cap with a voluiie@nd a surface
== areaA that lies on a substrate with its circular base afga

We have applied this method to the sets of adhering vesicles with (Figure 7). The _spherlcal part .Of the s_urfa%‘@= A - A.‘ba has

weak and ultra-weak adhesion strength, separately. In both cases w& curvature radius denoted wiap, while the height (i.e., the

obtained an optimal bending rigiditg 0= 10T + 2T. smallest diameter) of the spherical cap is calied/e start from
In order to get more detailed information, we considered values the following simple geometric relations for a spherical cap:

«(i) that minimize the quantit; = ZJ-Nleij: which predominantly

depends on the properties of vesicldn Figure 6, the resulting A=2A_+ h? (25)

values of(i) are shown as a function of the reduced volumaf

vesiclei. Inspection of this figure reveals a certain tendencyxfor

to be more accurate if the reduced volume of the vesicles is large. V= b(3Ab + 7h?) (26)
The bending rigidity of DOPC has been measured with two 6

different methods by Niggemann et?alFrom fluctuation mode

spectroscopy a value= 5.3T & 0.6T was found for a vesicle with _ _ 2

aradiusR = 12 um. For the same vesicle the analysis of the shape ASp ZERSPh Apa+ (27)

deformations induced by an electric field reveated 15T & 1.2T. ] ) )
As shown in Figure 6, our results ferobtained for vesicles with ~ For an adhesion potential of rangethe adhesion area of the
R=10um lie clearly between the fluctuation mode and the electric spherical cap is given by

deformation measurement.
= + 28
Conclusions Aad=Prat Ay (28)

With the help of Monte Carlo simulations, we have found a whereA, is the part ofAs, that is closer to the substrate thdn
relation between the material properties of an adhering vesicle (see Figure 7). From eq 27 it follows that

and geometric quantities that can be determined from the

vesicle contour. Our approach provides a new optical method d

to measure the adhesion strength from the equilibrium shape A= 2”Rspd = As% (29)

of the adhering vesicle. This approach takes thermal fluctuations

into account and is not restricted to vesicles with a spherical \yhere we assume thdt< h. The aim is to express the reduced
cap geometry. A correction term for gravity effects is included. 54hesion area

The method is dedicated to measurements of weak and ultra-

weak adhesion strengths (i.e., for adhesion strehgthsl10-° A Ay
). O = Olpy + Oy =— + — (30)
The method is tested for a set of vesicles adhering to substrates A A

with weak and ultra-weak adhesion strength. Results are of the )

same order as those found elsewhere for similar materials. The@S @ function of the reduced volume

error related to individual measurements, which is inherent in i

our method (se_:e eq 15)_, can be overcome by analyzing a larger v = V\le = V(L—"nRs) (31)
number of vesicles, which is facilitated by the comparably low 3

(21) Bo, L.; Waugh, R.EBiophys. J.1989 55, 509. with R = (A/4m)Y2. For convenience we introduce
(22) Cuvelier, D.; Imre Denmyi, Bassereau, P.; Nassoy,Blophys. J2005

88, 2417.
(23) Kummrow, M.; Helfrich, W.Phys. Re. A 1991, 44, 8356. _77;h2 _ h2

(24) Niggemann, G.; Kummrow, M.; Helfrich, W. Phys. Il Fr.1995 5, 413. (32)

99 . A="7" "
(25) Dietrich, C.; Angelova, M.; Pouligny, Bl. Phys. Il Fr.1997 7, 1651. 4R2



Measuring Adhesion Energy of Vesicles
so thatV and Vg can be rewritten as
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P =1- 302, — 203, (42)
V= 1£2(6Aba+ 2.7th2) (33) The cubic equation i, has the solution
h . A O, = cos(%arccos(l— 2:/2)) - % (43)
= 1—2(3A — ah%) = 1—2(3 — CI)
(34) Now an expression fouy is needed:
ah? As_Apd_ At ah’ R
= 35 =—=_t"= -
R 6072 (35) NT AT AN A h (44)
. 1-q dh
andv can be expressed as a functiongof = (T +q ﬂ (45)
o= A g (36) v (46)
R 4 q
(8- q)«/a (37) Multiplying egs 37 and 46 provides
==
~B—qg@+
. o CanlIChl:) q)8( 9 (47)
From eq 25, it follows that
~(2+ 20,)(2 — 2a,,)
p = A=t ) =d 5 (48)
=
2
All B O“ﬁa
_Aba_ 1—q Oy = 20 (49)
Opa = A =5 (39)
so thatasc is given by

q=1- 2O*ba (40) All - aﬁa

Osc = Opa + 2 (50)

which provides a relation betweenand oy v
U= (1 - (X.ba)«/ 1 - 2(1ba

Equations 43 and 50 are identical to eqs 10 and 9.
(41) LA063123R



