Goals for lecture – Molecules, interactions, surfaces

- 1. Revisited Assay principle (specific binding)
- 2. Molecules
- 3. Interaction forces
- 4. Affinity, avidity, multivalency
- 5. Functionalizations and surface chemistry
- 6. Quantitative vs. qualitative

1. Assay principle

Microarray assay principle

• Highly parallelized analysis of *interactions*/reactions

Microarrays – Big picture

2. Overview of immobilized molecules

Which ones do you know?

Overview of molecules

Molecules of interest for microarrays

- Oligonucleotides (DNA, RNA), aptamers
- Proteins & peptides
 - Anti-/Nanobodies
- Glycans
- Lipids
- Small molecules

How to immobilize molecules on a surface?

 $\rightarrow 4^{n}$

Olignucleotides

- pH 7: backbone negatively charged, bases neutral
- Special reactive groups often added to 3' or 5' end

Peptides & proteins

- Reactive groups:
 - NH₂ (amine), COOH (carboxyl), OH
 (hydroxyl), SH (thiol)

Peptides & proteins

- Proteins
 - Hormones
 - Enzymes
 - Receptors
 - Antibodies
 - ...

https://www.mun.ca/biology/scarr/iGen3_06-04_Figure-L.jpg

Antibodies

• Antibody (IgG, IgD, IgE)

Heavy chain Light chain Constant (Fc)

E.g. Adalimumab (Humira) for rheumatoid arthritis, developed via phage display

• Porter & Edelman, Nobel prize 1972

 \rightarrow Structure of antibodies

Structure of antibody in PyMol (Schrödinger, pymol.org/dsc/), based on RCSB PDB (www.rcsb.org) ID 1IGT

Antibodies

Other variants

Specific binding

• Epitope & paratope

a: continuous epitopeb: conformational epitopec: hidden antigend: neoantigen

Antibodies

• Human antibody classes

	lgG1	lgG2	lgG3	lgG4	lgM	lgA1	lgA2	lgD	lgE
Heavy chain name	γ ₁	γ ₂	γ ₃	¥4	μ	α1	a ₂	δ	ε
Molecular weight [kDa]	146	146	165	146	970	160	160	184	188
Average adult serum concentration [mg/mL]	9	3	1	0,5	1,5	3,0	0,5	0,03	5×10 ⁻⁵
Half life in serum [days]	21	20	7	21	10	6	6	3	2

Janeway, Immunologie, 2018

• Typical Ig immune response

Antibody diversity

- Specificity *via* diversity
- Evolutionary process
 - V(D)J recombination (~3×10¹¹ combinations)
 - Somatic hypermutation (1-2 mutations in antigen binding site, per cell generation)
 - Clonal selection (autoimmunity!)

Janeway, Immunologie, 2018

Anti-/Nanobodies

- Nanobody
 - E.g. camels or sharks
 - Only heavy chains
 - Small, stable, cheaper
 - Lower immunogenicity

Philippe Lavoie, Wikipedia

 \rightarrow Other antibody (fragment) types

Fercher et al., Experimental biology and medicine 2018

- Cell surfaces covered with various complex <u>carbohydrates</u>
- Glycans involved in many cell-cell interactions (e.g. cell motility or adhesion)

- Pathogens often use surface-bound carbohydrates for invasion
- Pathogen glycans cause anti-glycan antibodies

\rightarrow Carbohydrate-based vaccines

2. Overview of immobilized molecules

1822-1894

Glycans – Carbohydrates - Saccharides

• "Carbohydrates" derived from hydrates of carbon (1844)

Glycans - Monosaccharides

What is the α- and β-anomer?

- Monosaccharides
- \rightarrow Oligo-/Polysaccharides or Glycans

Lactose: β -D-galactose-(1 \rightarrow 4)-D-glucose

 β -1 \rightarrow 4 glycosidic bond

• In mammals only 10 different sugar building blocks

Why does a human glycan n-mer have > 76ⁿ variants?

Lipids

- Biological lipids: amphiphilic compounds (hydrophilic head, lipophilic tail)
- Required for structure (membrane), energy, signaling
 - Phospholipids (phosphoglycerides, sphingolipids)
 - Glycolipids (phosphoglycolipids, sphingoglycolipids)

Immobilization difficult \rightarrow Unspecific adhesion

Small molecules

- Most drugs are small molecules (e.g. antibiotics, anti-malarial drugs)
- Low molecular weight (~< 900 Da)

 \rightarrow oral (< 500 Da) vs. intravenous

- Can pass the lipid membrane
- Bind specific biological macromolecules
- Natural or synthetic compounds

Molecular Weight: 444.44 Da

Immobilization depends on available groups

Giganitc number of small molecules (full chemical space)!

Molecular Weight: 324.42 Da

3. Interacting forces

Coulomb's law

Neutrons)

• Atomic attraction

- Hydrogen bonds (\rightarrow hydrophobic/hydrophilic forces), 4 50 kJ/mol
 - Special dipole-dipole case (H bonds to N, O, F atoms)

- Dipole-dipole, ~4 50 kJ/mol
 - Partial charges (electronegative)

• Van-der-Waals (induced dipole) 0.4 - 4 kJ/mol (*e.g.* \rightarrow Hexane liquid)

- Random fluctuating polarizations (quantum dynamics)

Author: Yintan, https://en.wikipedia.org/wiki/Gecko

π-π stacking (aromatic ring interaction, part of dipole interaction)

Antibody-antigen interactions

• Antibody-antigen binding is non-covalent \rightarrow reversible

4. Affinity, avidity, multivalency

Affinity

- Goal: Quantitative measurements of biological binding
- Non-covalent binding of <u>one</u> binding event of two molecules

$$\begin{array}{c}
k_{on} \\
A + B \rightleftharpoons AB \\
k_{off}
\end{array}$$

• In equilibrium: Constant concentrations

$$\frac{d[AB]}{dt} = [A] \cdot [B] \cdot k_{on} - [AB] \cdot k_{off} = 0 \quad \text{(Law of mass action)}$$

$$[A] \cdot [B] \cdot k_{on} = [AB] \cdot k_{off}$$

• Equilibrium is not a static state (on/off continues)

Non-equilibrium reactions

• Oscillating Belousov-Zhabotinsky reaction

https://www.youtube.com/watch?v=PYxInARIhLY

ightarrow Periodic color changes due to the formation and consumption of bromine

4. Affinity, avidity, multivalency

Affinity

- Affinity definition: \rightarrow 50 % of B is bound to A
- Equilibrium dissociation constant K_D

$$[A] \cdot [B] \cdot k_{on} = [AB] \cdot k_{off}$$

$$\rightarrow \qquad K_D = \frac{k_{off}}{k_{on}} = \frac{[A] \cdot [B]}{[AB]}$$

 K_D measured in: molar (mol/L = M) Antibodies: < 1 μM; 1 μM → quick dissociation Very good antibodies: ~1 nM Exceptionally good antibodies: ~10 – 100 pM → "longer"/stronger binding Biotin-streptavidin: 10 fM

Measurement: $[A]_{Total} << K_D$ Keep [A] constant, titrate B

Affinity

Measurement:

 \rightarrow [A] constant, titrate B

4. Affinity, avidity, multivalency

Affinity

Keith Larence Brain, https://en.wikipedia.org/wiki/Ligand_(biochemistry)

Affinity measurement

- Direct labeling
 - Biotin
 - Radioisotopes
 - Fluorophores/quantum dots
 - Enzymes

→ Can cause steric hindrance or change structural/chemical configurations of analyte

- Label-free detection
 - Surface plasmon resonance (SPR)
 - <u>Isothermal titration calorimetry</u> (ITC)
 - Quarz crystal microbalance (QCM)
 - Ellipsometry
 - Reflectrometric interference spectroscopy (RIFS)
 - Oblique-incidence reflectivity difference (OI-RD) scanner
- → Sensitive measurement of native biomolecules
- \rightarrow Requires special devices

Affinity measurement – Biacore

• Surface plasmon resonance (*e.g.* Biacore by GE Healthcare)

Multivalency

- Biomolecules can bind to each other at more than one site
- Multivalency:
 - Simultaneous binding of multiple ligands on one biological molecule to multiple receptors
 - Strong (in total), weak(er) single interactions, but also reversible
 - Multiple similar (IgM) or different (virus) binding sites can contribute

Haag, Beilstein J. Org. Chem. 2015

- Virus-host
- Ligand-receptor
- Cell-cell

Avidity & multivalency

- Affinity does not represent:
 - Complex antigens with many (repetitive) binding sites and e.g. antibodies with 2 – 10 binding sites
 - Interaction of antigen and antibody in one site increases probability to bind at a second site (if present)
- **<u>Avidity</u>**: Binding strength of multiple interactions together

 \rightarrow High avidity compensates for low (single) affinity

Biology 2e, OpenStax

Antibody-antigen interactions

• Precipitation (Heidelberger) curve

→ Saturation can cause lower binding signal in assay

 $https://www.abiweb.de/biologie-immunologie/vielfalt-des-immunsystems/antikoerpervielfalt/antigen-antikoerper-interaktion.html \label{eq:constraint} https://www.abiweb.de/biologie-immunologie/vielfalt-des-immunsystems/antikoerpervielfalt/antigen-antikoerper-interaktion.html \label{eq:constraint}$

Cross reactivity

- Despite specificity of antigen-antibody interaction:
 - Antibody may cross react with other antigens (unrelated epitope with similar binding properties)
- Example 1: ABO blood group antigens (glycans!)
 - A and B blood type defined by different glycan antigens

 \rightarrow Microbes cause development of complementary blood group antibodies

Cross reactivity

- Viral and bacterial antigens similar to human components
 → Induced autoimmune reaction (rheumatic fever)
- Example 2: Streptococcus pyogenes cell wall antigens (M protein)
 Antibodies may cross react with heart and skeletal muscles

 (theory is still debated!)

– Break –

Elevator Pitch

Describe your Bachelor thesis project in 30 seconds to a non-expert scientist

5. Surface functionalizations, surface chemistry, reactive groups

Microarrays – Big picture

Surfaces

No "one fits all" for the ideal immobilization
 → Unique solutions for each molecule/application

Components

- Substrate (support material)
- Functionalization (linker)
- Molecule (catcher/binder)

Substrate

Polymers

Polystyrene (PS) Polyacrylamide Polyethylenterephthalate (PET) Polyurethane Polyvinylalcohol (PVA) Nylon Polypyrrole Sephadex LH 20 Perfluoropolymer Polypropylene (PP)

http://vp-sci.com/products/reagent-cleaning-reservoirsand-specialty-labware/microplates/vp-416.html

<u>Inorganic</u>

https://www.mirka.com/glass_sanding/

Organic/Biological

Cotton Cellulose Latex Nitrocellulose Carboxymethyldextran Chitosan

https://www.bestvaluevacs.com/cellulose-filter-paper-50-micron-5-pack.html

\rightarrow Mixtures or composites

Substrate – glass

- Glass most versatile for chemical functionalization
 - Temperature stability
 - Inert
 - Chemical resistance to most organic solvents, salt, pH
 - Planar and smooth surface (roughness < 10 nm locally)
 - Low background fluorescence
 - Cheap
 - Environmental compatibility

Immobilization strategies – non-covalent

Adsorption, physisorption

- Non-covalent binding (less stable), *e.g.* electrostatic or hydrophobic
- Fast, simple, (mainly) nondenaturing
- No molecular orientation
- Examples:
 - ELISA (polystyrene)
 - Western blot (nitrocellulose)

<u>Vroman effect:</u> - First smaller (quicker), then, larger proteins adsorb to surfaces

- In equilibirum mainly larger molecules are adsorbed

SurfaceChem446, https://de.wikipedia.org/wiki/Physisorption

Immobilization strategies – non-covalent

Ionic/polar binding (nucleic acids and some proteins)

Immobilization strategies – non-covalent

Inclusion

- Trapping molecules in gels/hydrogens (agar or polyacrylamide)
- Nondenaturing
- Gel pores must be smaller than trapped molecule
 - Not suitable for smaller molecules

Example

- Aldehyde-, lysine-polyethyleneglycol, IgG mixture spotted on surface
- Incubation with Cy5-labeled protein G

Jonkheijm et al., Angew. Chem. 2009

5. Surface functionalization

Immobilization strategies – non-covalent

Affinity immobilization

- (Strept-)avidin/biotin
- Protein A/G
- Nucleotides

Biotin

• Fatty acids, flourinated alkanes

Streptavidin

• PolyHis-Tag & nickel

Immobilization strategies – covalent

- Forming a covalent chemical bond to a surface
 - Polymer
 - Glass
- Reactive groups required
 - Sulfur-gold binding (easy, quick, but less stable)
 - Introduction of reactive groups
 - \rightarrow Polymers: introduce co-polymers
 - \rightarrow Glass: requires harsh chemicals

5. Surface functionalization

Immobilization strategies – covalent

• Sulfur-gold binding

https://syntheticremarks.com/what-is-the-true-nature-of-gold-sulfur-bonds/

Immobilization strategies – covalent

• Silanization:

Jonkheijm et al., Angew. Chem. 2009

3d surfaces (polymer on glass)

• Glass surfaces with Functional polymer surfaces

2d functionalize surface

d functionalize surface

• Functional polymer surfaces

Many companies sell functional microarray surfaces (Schott, Surmodics, PolyAn, Pepperprint, etc.)

Functional surface groups 1

• Different silanes with functional/reactive surface groups

Functional surface groups 2

Photoreactive group(s)

Disadvantages:

- May react unspecifically
- May destroy molecules

Advantages:

- Rapid attachment (no chemical modification required)
- High resolution (light → semiconductor industry)

Functional surface groups 2

Photoreactive group(s)

[a] Photocleavable protecting group.

Disadvantages:

- May react unspecifically
- May destroy molecules

Advantages:

- Rapid attachment (no chemical modification required)
- High resolution (light → semiconductor industry)

Covalent coupling

• Covalent coupling via amide bond (amine)

• Racemization (epimerization) with carbodiimides only

Covalent coupling

• Covalent coupling *via* epoxide group

• Covalent coupling via N-hydroxysuccinimide (NHS) group

$$O - N + H_2 N$$
 $Ligand + HO - N + HO + HO + HO$

• Covalent coupling via thiol-maleimide

Covalent coupling

- Click chemistry
 - Introduced by K. B. Sharpless in 2001
 - Reactions that are high yielding
 - Byproducts can be removed without chromatography
 - Stereospecific
 - Simple
 - Easily removable/benign solvents (some are even biocompatible!)

Copper-catalyzed azide-alkyne cycloaddition (CuAAC)

$$R - N_{3} + = R' \xrightarrow{0.25 - 2 \text{ mol-}\% \text{ CuSO}_{4} \cdot 5 \text{ H}_{2}\text{O}}{H_{2}\text{O} / t\text{BuOH} (1:1), \text{ r.t.}, 6 - 12 \text{ h}} \xrightarrow{R - N - N}{R'}$$

$$H_{2}\text{O} + CuSO_{4} + \text{Ligand}$$

6. Qualitative vs quantitative

What do you think is a quantitative measurement?

Qualitative vs. quantitative

https://kenandeen.wordpress.com/2015/01/18/quantitative-vs-qualitative-data/

Quantitative experimental data should be highly reproducible!

- 1. Molecules
 - Which ones and how can they be immobilized (reactive groups)
 - Typical surface functionalizations and surface chemistry
- 2. Interaction forces
- 3. Affinity, avidity, multivalency
 - Difference between affinity and avidity
 - Antibodies & nanobodies, types
- 4. Surfaces and key coupling groups
- 5. Quantitative vs. qualitative