Ionic-Self Assembly (ISA) as a route towards (highly ordered,liquid crystalline) nanomaterials with new architecture

> Markus Antonietti Max Planck Institute of Colloids and Interfaces Research Campus Golm, 14424 Potsdam

supramolecular salts

catanionic surfactants systems

Polyanion-Polycation complexes

Figure 1. Polyelectrolytes employed for the self-assembly of multilayers.

precipitates from water,

easy synthesis

Figure 3. Phase diagram for QPVP/PMAA/NaCl mixtures in aqueous solution at pH 8.4 supported by 0.01 M phosphate buffer. Concentrations of polymers were 0.001 M, and degrees of polymerization of QPVP and PMAA were 900 and 1700, respectively.

Strong and weak electrolytes behave differently

Classical in food and drug industry: ccoacervation

Weak (carboxylated) PE/gelatin	Xanthan gum/gelatin
Weak (carboxylated) PE/gelatin	Gum arabic/gelatin
Weak (carboxylated) PE/gelatin	Sodium carboxymethyl guar gum/gelatin
Weak (carboxylated) PE/globular protein	Low and high methylated pectin/β-lactoglobulin
Weak (carboxylated) PE/globular protein	High-methoxyl pectin/β-lactoglobulin
Weak (carboxylated) PE/globular protein	Xanthan gum/whey protein
Weak (carboxylated) PE/globular protein	Gum arabic/β-lactoglobulin
Weak (carboxylated) PE/globular protein	Gum arabic/B-lactoglobulin
Weak (carboxylated) PE/plant protein	Carboxy methyl cellulose/potato proteins
Weak (carboxylated) PE/globular protein	Gum arabic/whey proteins
Cationic polysaccharide/plant protein	Chitosan/faba bean legumin
Two polysaccharides (weak PE/chitosan)	Alginate/chitosan
Two polysaccharides (strong PE/chitosan)	Carrageenan/chitosan
Strong (sulfated) PE/gelatin	k-carrageenan/gelatin
Strong (sulfated) PE/globular protein	ι- or κ-carrageenan or dextran sulfate/bovine serum albumin
Strong (sulfated) PE/globular protein	L-carrageenan/poly(L-lysine)
Strong (sulfated) PE/globular protein	Dextran sulfate/sodium caseinate

Lii et al. [71] Peters et al. [72] Thimma and Tammishetti [62]

Girard et al. [19**,33-36]

Kazmiersi et al. [73]

Laneuville et al. [74] Sanchez et al. [75-77]

Schmitt et al. [25,78-80] Vikelouda and Kiosseoglou [81]

Weinbreck et al. [21,30^{**},31,37,47^{**},82] Plashchina et al. [83] Yan et al. [84,85] Shumilina and Shchipunov [86] Antonov and Gonçalves [87] Galazka et al. [88]

Girod et al. [26] Gurov et al. [89] flocculated particles) Coacervation Coacervation Coacervation

Coacervation ? (although referred to as electrostatic complexes) Precipitation for a modified pectin with higher charge density Coacervation ? (fibrous complexes) Coacervation Precipitation Precipitation

Precipitation Coacervation Precipitation Precipitation Precipitation

> Coacervation Precipitation

Fig. 1. Cartoon of two self-assembled complexes of gum arabic (white ribbon) and β -lactoglobulin (dark spheres). The complex as a whole is considered as a new colloidal entity. The picture is approximately to scale, a protein is 4 nm in diameter and the gum arabic has a diameter of approximately 50 nm.

Fig. 4. Whey protein/gum arabic concentrated coacervate phase pored with a spoon. The coacervate is very viscous in nature.

Polyanion-Polycation complexes: layer-by-layer technologies

Polyanion-Polycation complexes: layer-by-layer technologies II

Hollow Inorganic-Hybrid Spheres

Polyelectrolyte Surfactant complexes

- formation highly cooperative
- 1: 1 complex
- dissolves in organic solvents
- film forming
- no Tg and softening

precipitates from water,

easy synthesis

Cooperativity of binding of PEs and surfactants

Binding isoterms of DTAB on a) polyacrylate;b) alginate; c) pectate; d) CMC

Polyelectrolyte complex films self-organize !

X-ray characterization of films

Na-PSS plus DTA-Br

→The product is a highly oriented lyotropic liquid crystalline polymer !

Structure model

smectic S_A-phase:

one flexible alkyl phase

one glassy ionic polymer phase

Structure of PAA with hydrophobic counterions

Conformation of single chains

Thermoplastic PE-Surf complexes by copolymerization

Choice of comonomers;

Different phases between 0 < x < 1

An interesting phase for the 40:60 mixture

plane oriented

Synchroton radiation

The HPL phase

A polymeric molecular sieve film ...

Fluorinated PE-Surfs: Coatings with ultralow surface tension

PE-Lipid complexes: high end rubbers

Mechanical characterization

Qantitative evaluation of the SAXS data:

From the scattering data, the normalized autocorrelation function of the radial density γ (r) is calculated. This can be expanded as:

$$\gamma(r) = 1 - \frac{1}{l_P} \cdot r + \frac{b}{l_P} \cdot r^3 + O(r^4)$$

The Porod length lp is easily transformed into a wavyness:

$$\frac{A}{A_0} = \frac{2d_1 \cdot d_2}{d \cdot l_p} = \left\langle \frac{1}{\cos \alpha} \right\rangle_{s_0}$$

The cubic term is a measure for the interface curvature:

$$b = \frac{1}{8} \langle H^2 \rangle - \frac{1}{24} \langle K \rangle$$

with b the Kirste - Porod - parameter, <K> the mean Gaussian curvature, and <H²> the mean square of the averaged curvature.

Procedure relies on good measurements at high s !

A walk through data evaluation....

The κ-ι- diagram

Solution: the super-undulated phase

Helfrich

Variation of lipid composition: increase ionic lipids

the corrugated lamellar phase

(a very close relative of the superundulated phase)

Complexes with oligopeptide

ox. Glutathione: a model peptide

AFM characterization of glutathionelecithine complexes

480 nm

Û

480 nm

n

0

480 nm

Structure Model

Complex structure with elements on three different length scales !

Complexes from double-hydophilic block copolymers (S. General)

- stable nanoparticles by surfactant or drug complexation
- · supramolecular approach to new polymer systems
- hierarchical superstructure

Materials

Poly(ethylene oxide)-*block*-poly(ethylene imine) as double-hydrophilic block ionomers

PEO-PEIcv H₃C O-CH-CH-O-CH PEO-PEI O-CH2-CH2+O-CH2+NH-CH2-CH2+NH2 HgC-10 PEO-PEIbr H₃C--O-CH₂-CH₂-O-CH₂-NH +нм-сн-со}п сн₂ ĊH₂ ĊH₂ ŇH CH₂ NH, H2N/CSNH poly (L- Arginine); poly (L-Histidine); poly (L-Lysine) pK_a~10.1 pK_~6.8 pK_~12

dodecanoic acid (C12) as surfactant

Coenzyme Q₁₀ as model drug

13 wt% incorporated !

Loading and local structure of the Drugs

Incorporated drugs	5
Coenzyme O.,	uptake %[w/w] 20 %
Estradiol	1-10 %
Triiodothyronine	15 %
Amphotericin B	~ 90 %
Azelaic acid	~ 50 %

Q₁₀

determined with homopolymers

WAXS; 20 % [w/w] Q₁₀ incorporated in PEI-C12complex

after a storage period of 150 days

Inner structure: characteristic graining of ~ 3 nm.

Dye-Surfactant Complexes via Ionic Self-Assembly

Ionic Self-Assembly

(ISA)

• Oligoelectrolyte-surfactant complexes

- Electrostatic interactions to drive the organisation of matter
- Modular approach: multiple non-covalent interaction strategy

π -Toolbox

• Shape-rigid, -defined tectonic units

Commercially available dyes

• Subphase formation?

Binding?

- Binding studies cooperativity?
 - Surfactant selective electrode
 - Titrino 720 / Dosimat 765 Combination
 - -20 °C ± 0.1 °
- Aggregate formation
- Precipitated complex 1:1 ratio?
 - EA & ICP-AES
- Properties

Chem. Eur. J., in press

Structure?

- What is to be expected?
 - Crystalline / LC materials?
 - Lamellar / columnar / other phases?
 - Internal organisation of dye subphase?

Structure

(cont'd)

• AR44 / AR 17 + single / double tail surfactants

Structure

(cont'd)

• PTSA as a discotic system

Structure

(cont'd)

- Nano-phase separation that simple?
- 3 Subphases a reality?

Single crystal analysis $OG + C_{14}TAB$

Nature surprises us!

Giant-Polyoxometallates

The "ferris wheel" /A. Müller

Expanding modular approach

- Surfactant, codon, metallic species
- Multiple interaction strategy

Modular Approach

(cont'd)

• Complexes based on stepwise noncovalent interactions

Camerel, Strauch, Antonietti, Faul, Chem Eur J, 2003

Cu(I) / Cu (II)

•Behaviour of copper species?

Colour change with complexationCu(II) to Cu(I) via complexation

•Heating of green Cu(II) complexes

- •Films turn black
- •Back to green via dissolution

Materials Properties

(Cu(I) / C(II))

Conclusion

- ISA is a facile route to organise matter
- Coacervation, symplexes, LbL-structures
- Objects turn into nanos, films and materials
- Partly solubility in solvents
- Multiple interaction strategy
- Organisation of oligoelectrolytic π -systems
- Exciting mechanical & optical properties
- Structures and organisation into subphases

