"Polymer-Dispersionen"

Klaus Tauer

Definitions

Meaning & properties of polymer dispersions

Preparation of polymer dispersions

Polymer Dispersions

Polymer:

any of a class of natural or synthetic substances composed of very large molecules, called macromolecules, that are multiples of simpler chemical units called monomers. Polymers make up also many of the materials in living organisms, including, for example, proteins, cellulose, and nucleic acids.

Dispersion:

(physical chemistry) a special form of a colloid: i.e. very fine particles (of a second phase) dispersed in a continuous medium

the most popular / famous / best-known case of a polymer dispersion is a \underline{LATEX}

a latex is produced by <u>heterophase polymerization</u>, where the most important technique is <u>emulsion polymerization</u>

What is a Polymer Dispersion?

N polymer particles with an average volume $V_{\rm P}$ dispersed in a liquid of volume $V_{\rm W}$

the liquid is called dispersion medium or continuous phase or serum or homogeneous phase *) 1 DM = 1.95583 €

Molecular Composition of a Latex

solids: 50 %, D = 200 nm, $M_N = 6 \ 10^5 \ g \ mol^{-1}$, styrene

 $N \sim 2.3 \ 10^{14} \ cm^{-3}$ 4400 macromolecules $n \sim 6000$ per particle

General:

polymer dispersionen:

high concentration of polymer with low viscosity

thickener (BASF AG, Ludwigshafen)

Virtual EASE 2003/1 "Thickening agent"

Sterocoll is an acidic aqueous polymer dispersion containing polymer particles rich in caroxylic acid groups. It is used as thickening agent.

First the polymer dispersion is diluted with water to lower the polymer content from 30 % to 5 %. It is still a white liquid having low viscosity.

By addition of a small amount of an aqueous sodium hydroxide solution the pH is increased and the caroxylic acid groups are negatively charged. This makes the polymer particles soluble in water and a polymer solution is formed. At the same time the viscosity strongly increases due to the unfolding of the polymer molecules. At the end a clear gel is obtained.

The Meaning of Polymer Dispersions

MECHANICAL ENGINEERING

each application needs a polymer dispersion with special properties

important application properties:

viscosity

viscosity-psd

dilatancy (BASF AG, Ludwigshafen)

"Dilatancy"

Dilatancy is a rheological phenomenon. A dilatant liquid shows viscosity raise as the shear rate is increased. Or in other words when a rod or a stirrer is moved at higher velocity in the liquid it thickens.

With the polymer emulsion shown in the experiment the effect has been driven to an extreme. The emulsion consists of small polymer particles of ca. 300 nm. As long as the shear rate is low e.g. during pouring or slow stirring it stays thin. The particles order themselves into rows or planes that can pass each other with only little friction.

The liquid flows easily. As the rod is rapidly pulled out the applied shear rate increases, the order of the particles is completely destroyed. They interlock and can not move independently any more. The whole system is converted into a solid like state. It now can transmit forces that the beaker can be lifted.

"stress makes tough"

- stress shifts the particle layers in highly concentrated emulsions so that the space between the particles increases
- water cannot redistribute quickly enough
- subsequently the latex solidifies (walking on the beach)

important application properties:

viscosity

dilatancy

viscosity-psd (BASF AG, Ludwigshafen)

"Diversity matters"

This experiment shows that the viscosity of a polymer colloid strongly depends on particle size distribution.

The first polymer colloid contains small polymer particles with a diameter below 100 nm. The second consists of particles with a diameter of bigger than 500 nm. Both polymer colloids are pasty, their viscosities are high.

After mixing the resulting dispersion has a bimodal particle size distribution and the viscosity is much lower than either one before.

The small particles fill up the space between the big ones and the more diverse mixture is flowing more freely.

"thick + thick = thinner"

D ~ 500 nm

- the smaller particles distribute evenly between the larger particles
- subsequently water is "released" and the dispersion diluited

P. Baum, J. Engelmann Nachrichten aus der Chemie, Weinheim, 49/3 (2001) 368f

Emulsion Polymerization Products

D. Bassett (NATO ASI Recent Advances in Polymeric Dispersions, Spain 1996)

Latex Applications

100% = 7.400.000 tons per year

D. Bassett (NATO ASI Recent Advances in Polymeric Dispersions, Spain 1996)

No Good Quality Paper Without Latexes

100 µm

★ coating (latex binder + pigment 20/80 w/w up to 4/96 w/w) and air

paper fibers air

coated paper is a fiber-reinforced pigmentbinder-air composite

paper consumption:

USA 330 kg per head China 20 kg per head there is to expect an increase in paper production of at least 4 10¹¹ kg if the paper consumption will be equal in China and the US

Do Ik Lee (Dow Chemical Company) Nato ASI "Recent Advances in Polymeric Dispersions" June 23 - July 5, 1996, Proceedings Volume I

paper with a halftone dot

Biomedical Applications - Principle

benefits of latex particles for medicine & biotechnology

take advantage of the large interfacial area and the possibility to tailor both surface and volume properties

Biomedical Applications - Examples

R.M. Fitch "Polymer Colloids", Academic Press, 1997, 164-172

- treatment of cancer of the nerve cells (neuroblastoma)

J. Ugelstad et al. Polymer Intern. 30 (1993) 157-168

Dynabeads[®].

bone marrow is taken from patient and slurried with magnetic, monosized
 4.5µm particles which are immunospecific for the neuroblastoma cell surface

Film Formation Synthetic Latexes STY-BD-AA latex Schematic drawing (a) Suspended $\langle \mathbf{b} \rangle$ Consolidated (C) Deformed Coalesced (\mathbf{d})

Ö.Pekcan, TRIP 2 (1994), 236-243

K. Takamura et al. TAPPI proceedings, Coating Conference 1995, 391-405

Stabilization of Colloidal Particles - 1

most important case:

D.F. Evans, H. Wennerström "The Colloidal Domain", VCH 1994, p. 336

Stabilization of Colloidal Particles - Charges + Polymers

charged polymer, adsorbed or tethered

depletion stabilization.

charges on particle surface and polymer adsorbed or tethered

Polymer Dispersions

Natural Rubber (NR)

Occurence: in over 1000 species of plants (dikotyledonen) as white liquid (milky sap) = natural latex

European plants: Gänsedistel (sonchus oleraceus) salad (lactua sativa)

Economic importance: hevea brasiliensis tree sole source of natural rubber (99%) height: 20 m; diameter: 0.7 m productivity: 10 g latex a day (33% solid)

The Rubber Tree Reactor

Natural rubber is produced in a system of tubular vessels in the tissue of the tree. Freshly collected latex contains all the enzymes necessary for the formation of rubber from the sugars photosynthesized in the leaves of the tree.

Continuous tubular reactor (L: 20m; D: 0.7m) Pressure: 1.38 bar Productivity: 10 g/day World production: 5 million tons/year

Application: rubber with high elasticity Price: about 1 US-\$ per kg

Natural Latex Polymer

- enzymatic catalysed biosynthesis

polyisoprene repeating unit

Natural Latex

The natural latex of the Hevea brasiliensis tree is a cytoplasmic system consisting of cis-polysioprene particles in an aqueous phase electro-sterically stabilized by proteins (1-2%) and phospholipids (0.4-0.8%). [pH: 6.5-7.0; ρ : 0.98 g cm⁻³; SC: 33%]

PSD: 50 nm up to 1.6µm DP: 8.000 - 30.000

TEM photographitaken from F.A. Bovev, I.M. Kolthoff, A.I. Medalia, E.J. Meehan, 'Emulsion Polymerization'', Volume I.X.High, Polymeriz, Interscience 1955

Heterophase Polymerization Techniques

Technique	Components	
Suspension Pm*	Dispersion Medium	
Microsuspension Pm [®]	Monomer	
Dispersion Pm.	Polymer	
Emulsion Pm [®]	Stabilizer	
Miniemulsion Pm.		
Microemulsion Pm.		

Technique	Components		Technique	Components
Precipitation Pm.	Dispersion Medium			
i rooptation i m.			Bulk Pm	Monomer
	Monomer		Dunktinn	
	Polymer		Gas Phase Pm.	Polymer

Basic Principle: polymer is insoluble / immiscible in the medium

• of technical importance

Heterophase Polymerization - A Simple Definition

- a generic term for methods to produce different kinds of polymer particles:

monodisperse particles

color without dyes (BASF AG, Ludwigshafen)

"Color by transparent latex particles"

Monodisperse polymer particles can arrange in a quasi crystalline ordered structure and produce an angle dependent color effect due to Bragg diffraction at the 'crystal' planes. When the lattice parameter is comparable with the wavelength of visible light and a refractive index difference between the particle and the matrix exists, an intensive iridescent color will be observed. The polymer films used here were made from an emulsion made by two step emulsion polymerisation. A crosslinked hard core particle is formed in the first step, followed by the film forming outer phase in the second step. Both the mechanical properties and the color effects of the films could be varied by changing the particle size and the thickness of the outer phase.

The color changes from red through yellow to green the more acute the viewing angle is. This is because the apparent distance between two particles decreases the more oblique the angle of observation. Also the amount of shell material and thus the distance between the nanoparticles is changed, and results in different colors. As the size of the core-shell particles decreases, the color, when observed from a vertical perspective, changes from red through yellow to green and even blue. Depending on the viewing angle, the same area appears for example either as glowing red or bright green. The particle size has to be accurately chosen, since even minor changes of about 20 nanometers have a clear effect on the color.

"colors without dyes"

reflexion (and color) depends on the wave length of incoming light and the observation angle

Common Features of Heterophase Polymerizations

Heterogeneous system; spatial density differences; at least two phases; transport processes; equilibria;....

Curriculum Vitae of a Latex Particle

swelling

nucleation

growth

some unusual examples (regarding morphology)

Advantages of Heterophase Polymerization Techniques

- Easiness of polymerization heat removal
- Viscosity of the reaction mixture is low and independent of the polymer molecular weight
- Monomer and emulsion feed procedures are possible as the monomer consumption takes place outside the monomer droplets
- Monomer concentration at the reaction loci can be kept stationary at its highest level so that the rate of polymerization is high during the entire reaction
- The particle size distribution as well as the average particle size can be tailored over wide ranges
- Product properties can be changed nearly unlimited

most important mechanism today: radical polymerization

Suspension Polymerization

- Water, monomer, oilsoluble Initiator, protective colloid (water soluble polymers: Polycarboxylic acids, cellulosic materials, poly(vinylalcohol))
- Reaction product is a slurry of suspended polymer particles with a particle size in between 50 - 400 µm
- Particle size is determined by monomer typ, stabilizer, and agitation
- Technical very important (styrenic ion exchange resins, VC homo and copolymers, tetrafluorethylene, vinyl acetate)
- Bulk polymerization in the monomer droplets
- Reactor sizes up to 200 m³, cycle times before cleaning the reactor around 500; radical scavengers at the reactor walls to prevent fouling and water phase polymerization

Suspension Polymerization

Particle Morphology

Encyclopedia Polymer Science and Engineering, Vol. 16, John Wiley & Sons 1989

Microsuspension Polymerization

- Smaller droplet sizes than in suspension polymerization
- Microsuspension preparation with homogenizers; stabilization of the monomer droplets
- Special surfactant system (mixture with polymeric stabilizers PVAL)
- Particle sizes in the µm-range
- Monomer soluble initiators
- Crucial point: to avoid emulsion polymerization
- Technical important for the production of special PVC-types

Example: Microsuspension Polymerization Staining a monomer emulsion

Vinyl Chlorid droplet emulsifier free polymerization diameter 13.1 µm

B.R. Paulke, PhD 1985

FIG. 4. Vinyl chloride droplets in the microsuspension recipe.

μ-emulsion: 40%VC, 59% water, 1 suspension agent, 1100 rpm 30 min. bar indicates 10 μm

H.W.H. Yang, J.Macromol.Sci.-Phys. B20 (1981) 199-206

Polymerization of or in monomer emulsions

<u>Question</u>: whether or not it is possible to convert the characteristic features of monomer droplets into that of polymer particles???

<u>Answer</u>: yes, by seed and feed techniques, even in large scale

Suspension, miniemulsion and emulsion polymerization

to preserve the droplet properties during polymerization (in the sense to make a 1:1 copy)

Emulsion Polymerization

- Recipe: Monomer, water, emulsifier(s), water soluble initiator
- Result: polymer latex with a particle size in between 20 nm and several µm depending on the recipe and polymerization conditions
- The heterophase technique with the most technical realizations, the greatest flexibility, and the most economic importance
- From the scientific point of view the most exciting technique
- It is more than 80 years old but with increasing importance especially due to environmental demands

Ideal Behavior of an EP

Space emulsion polymerization but worldly results

1983, in zero gravity aboard the Challenger STS-6: the first products ever made in space - polystyrene latexe particles (certified as standard reference materials for calibrating microscopic objects); J. W. Vanderhoff & M. S. El-Aasser (Lehigh University, USA)

Particle Morphologies in a Two Stage Emulsion Polymerization

Schematic Drawing of Various Morphologies

S.Lee, A. Rudin J. Poym. Sci.: Part A: Polym. Chem. 30 (1992) 865-871

Core - Shell Particles (1)

Problem: a hydrophilic core and a hydrophobic shell

- polystyrene (2nd stage monomer)
- PMMA (1st stage monomer)

Successful solution: two stage semi-batch polymerization with slow monomer-emulsion feed and redox initiation at 21°C (high core viscosity and low mobility inside the core, respt.)

S.Lee, A. Rudin J. Poym. Sci.: Part A: Polym. Chem. 30 (1992) 2211-2216

Core - Shell Particles (3)

Problem: a hydrophilic core and a hydrophobic shell

polystyrene (2nd stage monomer) dark areas

PMMA (1st stage monomer) bright areas

Failure:

two stage batch polymerization with KPS initiation at 60°C (low core viscosity and high mobility inside the core, respt.)

S.Lee, A. Rudin J. Poym. Sci.: Part A: Polym. Chem. 30 (1992) 2211-2216

Dispersion Polymerization

- Monomer is soluble in the dispersion medium (it starts as homogeneous solution)
- Polymer precipitates at a certain chain length (it ends as dispersion of polymer particles)
- Polymeric stabilizer (poly(ethylene glycol), poly(vinyl pyrrolidone, hydroxypropyl cellulose))
- Solvency of the dispersion medium has a strong influence (ethanol, methanol, mixtures with water)
- Particle size in the range of 1-10 µm monodispers particle size distributions
- Structured particles (change of the dispersion medium)

Dispersion Polymerization in Supercritical Fluids

CO₂ as dispersion medium

- Polymerization above the critical temperature and the critical pressure of the dispersion medium
- Density variation of the dispersion medium over a wide range
- Precipiatation polymerization
- Advantage of carbon dioxide: it evaporates without environmental damage
- For a dispersion polymerization special stabilizers are needed (fluorinated)
- 1968 radical solution polymerization
- 1986 BASF Canada heterogeneous free-radical polymerization
- All kinds of polymerizations are possible; CO₂ is inert

Dispersion Polymerization in Supercritical Fluids Some data

2 µm

Solvent	$T_{crit}(^{\circ}C)$	P _{crit} (bar)	
CO_2	31.1	73.8	
$\mathrm{C}_{2}\mathrm{H}_{6}$	32.2	48.8	
$\mathrm{C_{3}H_{8}}$	96.7	42.5	
C_4H_{10}	152.0	37.8	
CHClF ₂	96.2	49.9	

PMMA particles prepared in CO₂

K.A. Shaffer, J.M. DeSimone TRIP Vol.3, (1995) 146-153

Microemulsion Polymerization

- Polymerization in microemulsions starts in the early eighties
- Thermodynamic stability due to very low interfacial tensions (down to 0.001 mN/m) that compensates the dispersion entropy
- Extreme surfactant to monomer ratios up to 10/1 per weight (emulsion polymerization with a very high surfactant concentration)
- Surfactant / cosurfactant (alcohol) or single surfactant system
- Large overall surface area: 100 m² per ml dispersion
- Optical transparency and thermodynamic stability
- Small particle size: down to 10 nm
- Great variety of structures and a unique microenvironment
- New morphologies are accessible

F. Candau NATO ASI "Recent Advances in Polymeric Dispersions", Spain 1996

<u>µ-Emulsion Droplets</u>

droplet thermodynamics (classical textbooks)

$$F = -\Delta P \cdot V + \sigma \cdot A = -\frac{4 \cdot \pi}{3} \Delta P \cdot r^3 + 4\pi \cdot \sigma \cdot r^2$$

$$\frac{\partial F}{\partial r} = 0$$

 $\Delta P = \frac{2\sigma}{2\sigma}$

 r_c

$$F = -\frac{4 \cdot \pi}{3} \Delta P \cdot r^3 + 4\pi \cdot \sigma \cdot r^2 + 8\pi \kappa (1 - \frac{r}{r_s})^2 + 4\pi \cdot \kappa$$
(Helfrich, 1973)

Microemulsion Polymerization

Some basic results

Figure 3. Microsemulsion polymerization mechanism: 1) Before polymerization: monomer swoilen micelles (d ~ 5-10nm). 2) Polymer particle growth a) by collisions between particles; b) by monomer diffusion through the continuous phase. 3. End o polymerization: polymer particles (d ~ 40nm) + small micelles (d ~ 3nm).

F. Candau NATO ASI "Recent Advances in Polymeric Dispersions", Spain 1996

Figure 3. Hydrodynamic radius $r_{\rm H}$ of the latices in dependence of the relative amount of surfactant S for DTMA (Δ) and CTMA (O). The straight line represents the calculated behavior corresponding to eq 1 and an interlayer thickness b = 3.5.

M. Antonietti et al. Macromolecules 24 (1991) 6636-6643

µ-EP common case

Fig. 1. Schematic scenario of the CLF-model: (a) Parental microdroplets of equal size are initiated by radicals formed in the aqueous phase. (b) Monomer transport from unpolymerized microdroplets through the aqueous phase results in growth of particles containing a polymerchain. Empty micelles are formed which allow continuous nucleation of new latex particles. (c) At the end of the polymerization, latex particles larger than the primary microdroplets coexist with a large surplus of empty micelles

Microemulsion - Results

[KPS]	UMSATZ	Dp	Np	Recipe:
(%)	(%)	(nm)	l/mL	97.216 g water
	22.06	54.0	5,1241 E+13	1.488 g SDS
1.50	51.31	52.0	1,3332 E+14	● ● 0.496 g AOT
	65.43	49.0	2,0587 E+14	batch 0.012 g KPS
	99.16	45.0	3,9671 E+14	0.9 g BuA
	23.22	58.0	2,0847 E+14	
0.90	49.02	55.0	2,2163 E+14	32.067 g BuA (feed)
	65.54	53.0	2,4254 E+14	
	98.53	51.0	2,6671 E+14	semibatch
	23.87	61.0	3,7131 E+13	
0.30	55.75	59.0	9,5845 E+13	
	63.54	57.0	1,2137 E+14	1 1.5% KPS 0
	95.37	55.0	2,0266 E+14	
				30 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -
				+
				Zeit (min)

Reactors & Procedures Emulsion Polymerization

- In principal emulsion polymerization doesn't require any special apparatus
- But for special products you need sophisticated recipes and procedures
- The wide variety of emulsion polymerization based products requires a wide variety of recipes and procedures
- Batch, semi-batch, and continuous procedures have been developed
- Seed procedures are very popular to avoid the uncertainties of particle nucleation

Labscale Reactors

Semi-Batch Reactors

D. Distler "Wäßrige Polymerdispersionen" Wiley-VCH, 1999

Encyclopedia of Polymer Science and Engineering, Volume 6, J. Wiley&Sons 1986

Continuous Emulsion Polymerization

18 EMULEION POLYMERIZATION

Vol. 6

Continuous processes are used for high production amounts with constant quality; easiness of on-line control; Problems: sustained oscillations of latex properties may occur

Fig. 10. Bayer continuous reactor for chlorogrene (19).

Encyclopedia of Polymer Science and Engineering,Volume 6, J. Wiley&Sons 1986

Continuous loop reactors (CLR)

Currently nine commercial reactors are in operation; most of them are single pipe 50 I reactors with a production of 2.500 t/y.

Advantage: large heat transfer area; great flexibility due to short residence times; a 50 I CLR can replace a 5.000 I batch reactor

Figure 1. Industrial unit [7]. J.M. Asua NATO ASI "Recent Advances in Polymeric Dispersions", Spain 1996.

Summary

polymer dispersions are a fascinating area of colloid science

D. Distler "Wäßrige Polymerdispersionen" Wiley-VCH, 1999 MPI, Golm

aqueous polymer dispersions are the future form of all polymers

Literature

"Polymeric Dispersions: Principles and Applications" J. M. Asua, ed.; NATO ASI Series E: Vol. 335 Kluwer Academic Publ. 1997

"Polymer Colloids" R. M. Fitch; Academic Press 1997

Emulsion Polymerization: A Mechanistic Approach" R. G. Gilbert; Academic Press 1995

"Emulsion Polymerization and Emulsion Polymers" P. A. Lovell, M. S. El-Aasser eds.; Wiley 1997

"Heterophase Polymerization" in "Encyclopedia of Polymer Science and Technology", 3rd edition Copyright © 2003 by John Wiley & Sons, Inc. All rights reserved. K. Tauer