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Biomolecular Machines

• Stepping motors • Motor teams

• Actin filaments
• Ribosomes
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Multiscale Motor Systems

• Cargo transport by
motor teams ~ 100 μm

• ATP hydrolysis ~ 1 nm • Mechanical steps ~ 10 nm

•Traffic of many motors/cargos
and traffic phase transitions 3



Stochastic Modelling I
• Stochastic processes on discrete state spaces 

• Motor Teams• Single Motors

• Motor Traffic as ASEPs
+ Diffusion

Klumpp, RL, PNAS (2005)
Müller ... RL, PNAS (2008)

Liepelt, RL
PRL (2007)

RL ... Nieuwenhuizen, PRL (2001)

4



Stochastic Modelling II
• Stochastic processes on discrete state spaces 

• Actin Filaments, space of patterns of T, Pi, and D subunits

• Ribosomes

Niedermayer ... RL,  PNAS (2012)
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Continuous Time Markov Processes
• Discrete state space with states i 

• Transitions |ij> from state i to state j with rate wij

• Transition rates wij can be measured

• State space + rates: continuous time Markov process (CTMP)

• Time evolution for probabilities Pi : 

d Pi / dt = -∑j [ Pi wij - Pj wji ]

• In general, backward transitions |ji> with rates wji

• CTMPs provide general theoretical framework

• In practice,  identify states and transitions, specify rates
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(Ir)Reversible Transitions 

• Reversible transition |ij>: appreciable rate wji for |ji>
• Irreversible transition |ij> : negligible rate wji , put wji = 0
• Thermodynamics: no irreversible transitions
• Biochemistry: rates wji too small  to be 

measurable, put wji = 0

• Steady state: d Pi / dt = 0
• Local excess fluxes  DJij = Pi wij - Pj wji

• Local detailed balance: DJij = Pi wij - Pj wji = 0



Protein Synthesis by Ribosomes

• Molecular Components

• Elongation Cycle

• Competition between tRNAs

• In Vivo from  In Vitro rates:

Similarity measure = kinetic distance
Minimization of kinetic distance
Validation of predicted rates

Sophia Rudorf
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Speed of Ribosomes

growing 
peptide chain

How long does it take for the ribosome to move to the next codon?
How long does it take to add a single amino acid to the chain?  

tRNAs charged 
with amino acids
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Ribosome + mRNA + tRNAs

• Ribosome steps along codons of mRNA (purple -> green)
consuming one ternary complex at each codon 

• Elongation cycle during one step: 
Decoding of codon by binding/accommodation of tRNA
Elongation of growing peptide chain by one amino acid
Translocation of mRNA together with two tRNAs

TC = ternary complex =
tRNA + EF-Tu + GTP 

EF-Tu = 
most abundant protein

Ribosome mRNA

TC
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Single Elongation Cycle

Initial binding of
ternary complex

Recognition between
codon and anti-codon

GTP hydrolysis, 
release of EF-Tu 
and E-site tRNA, 
peptide bond formation 

Translocation

• Complexity of decoding:
61 different codons and 43 elongator tRNA species (E. coli) 
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Codon-tRNA
Relationships

xxx

• cognate = green
• near-cognate = yellow
• non-cognate = red/purple

tRNA

co
do

n

• cognate decoding
=> correct amino acid

• non-cognate tRNAs are 
released after initial binding

• near-cognate decoding 
=> incorrect amino acid

Decoding pattern
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Single Elongation Cycle - Refined
• Possible binding of cognate/near-cognate/non-cognate tRNAs:

• Accommodation of
near-cognate tRNA
=> error rate

• Accommodation of 
cognate tRNA

• Competition between cognate, near-cognate, 
and non-cognate tRNAs
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Markov Process

• Map cartoon of multistep process onto Markov chain:

• All transition rates wij have been measured in vitro
• Some rates  identical for  cognates and near-cognates

Rudorf ... RL,  PLoS Comp Biol  (2014)

• Individual transitions:
initial binding, recognition, initial selection, GTP hydrolysis, 
phosphate release, proof reading, full accommodation 
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Transition Rates in vitro
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Ribosome + mRNA + tRNAs

• Ribosome steps along codons of mRNA (purple -> green) 
• Elongation cycle during one step: 
Decoding of codon by binding/accommodation of tRNA
Elongation of growing peptide chain by one amino acid
Translocation of mRNA together with two tRNAs

tRNA + EF-Tu + GTP
= ternary complex
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In Vitro versus In Vivo
• In vitro: Set of individual transition rates ωij

• Discrepancy for ribosome speed = peptide synthesis rate:
In vivo value >> in vitro value

• Ehrenberg group concludes from competition effect:
in vivo values of ωoff must be 10000 times larger  than
in vitro values !

Johansson ... Ehrenberg, Curr. Op. Microbiology (2008)

• In vivo: Individual rates cannot be measured  
but  overall speed of ribosomes can be determined  

Wohlgemuth ... Rodnina, Phil. Trans. Roy. Soc. B (2011) 
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‘Similarity’ of In Vitro and In Vivo ?

• Multistep process with many individual transitions  

• Set of in-vitro rates  wij   ó Set of  in-vivo rates wij

• How ‘similar’ or ‘close’ are the in-vivo to the in-vitro rates ?

• Quantitative measure for such a ‘similarity’ ?

*
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Dij (wij , wij ) =  Dij (tij , tij )  = Dij (1/wij , 1/wij )

Kinetic Distance: Single Transition

• Consider single transition from state i to state j

• Transition rates: In-vitro value wij ,  in-vivo value wij

• Naive distance: Absolute value of wij  − wij 

• But: could equally well consider transition times

• Kinetic distance Dij for single transition:  

• Simplest expression that fulfills this requirement: 

*

*
*

tij = 1/wij     and        tij = 1/wij * *

Dij (wij , wij ) = | ln(wij /wij ) | = | Dij | 

* *

* *

Rudorf ... RL,  PLOS Comp Biol  (2014)
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Kinetic Distance: Interpretation
• Arrhenius form of transition rates:  

wij  = nij exp[- DGij / kB T ]

• Coordinates Dij = ln(wij /wij )  represent ‘single barrier shifts’*

attempt frequency free energy barrier

In vitro

In vivo
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Kinetic Distance: Multistep Process

• Set of in-vitro rates  wij ,  set of  in-vivo rates wij

• Define ‘single barrier shifts’

• Multi-dimensional space with coordinates Dij

in vitroin vivo

Dij = ln(wij /wij )*

*

3-dimensional subspace
corresponding to three 
individual rates

12 distinct rates for elongation
„translation in 12 dimensions“
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Kinetic Distance: Multistep Process

• Kinetic distance = Euclidean distance in Dij –space:

• What about ‚weight factors‘?    Dij   replaced by uij  Dij

• Limit of single transition  =>  all  uij = 1

• Two different assays, A1 and A2

• Change from A1 to A2 leads to
simple coordinate transformation 
= shift of origin
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Minimization of Kinetic Distance
• Individual transition rates are not known in vivo but 
overall in-vivo speed is known (for different conditions)

• Minimize kinetic distance between known in-vitro rates
and unknown in-vivo rates under overall constraint 

• Multi-dimensional Dij - space:

constraint => hypersurface 
with possible in-vivo points

in-vitro point 23



Predicted In-Vivo Point

• Scale factors wij /wij
*

• Single barrier shifts

Dij = ln(wij /wij )*

Rudorf ... RL,  PLOS Comp Biol  (2014)
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Codon-specific Elongation Rates
• Each codon characterized by a different set of

cognate/near-cognate/non-cognate tRNAs

• Initial binding leads to codon-specific elongation rates:

Codon

El
on

ga
tio

n 
ra

te
 (a

a/
s) In vivo profile,

fast growth
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Validation by In-Vivo Data I
Curran + Yarus, J. Mol. Biol. (1989)

yellow data: anticodons with wobble

Predicted
c-specific
elong. rates

blue data: 
slippery sequences

Experimental estimates

• Pearson correlation coefficent = 0.73  (or  0.56)

• Relative translation rates  
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Validation by In-Vivo Data II
Sorensen + Pedersen, J. Mol. Biol. (1991)

• Uptake of radioactive S-methionine into β-galactosidase
• Simulation with codon-specific elongation rates

orange: predicted ωoff

blue: 1.2 ωoff
green: 0.8 ωoff
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Validation by In-Vivo Data III
Kramer + Farabough, RNA (2007)

• Missense error frequency  = probability to fully accommodate
certain tRNA at one of its near-cognate codons 

• Error frequency depends on codon usage pc

• Error frequency for tRNA-Lys measured to be 2 x 10-4

• Predicted in vivo rates lead to 3 x 10-4

Good agreement with three independent sets of 
in vivo data without any fit parameter !
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General Computational Method

• Applicable to any multistep process

• Global method with unique solution
or discrete set of solutions (bifurcation)

• Applicable to highly nonlinear constraints

• No a priori bias about importance of different transitions
(„Principle of least prejudice“) 

• Comparison with Flux Control Analysis (FCA):
FCA is local, restricted to linear response, no metric,
i.e., provides only direction in Dij – space but no distance

29



Summary
• Protein Synthesis by Ribosomes

Competition between different tRNA species
• Kinetics in vivo and in vitro 

Long controversy about (dis)similarity
• Kinetic distance

(Dis)similarity measure 
for multi-step process

• Kinetic distance minimization
Minimal distance of in-vitro point
from in-vivo hyper-surface

• General computational method

in vitroin vivo

Dij = ln(wij /wij )*
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Refined Modelling

• Distinguish TC concentration from 
total tRNA concentration

• Important subpopulation: uncharged 
but bound to ribosome

• Include recharging cycle of tRNA

Rudorf, RL, PLoS ONE (2015)

• Release of tRNA from E site
• Immediate release: 2-1-2 process
• Delayed release: 2-3-2 process
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Extension to Human Cells

• Scatter plot for 7500 genes of Hela cells: 

Total amount
of protein per 
unit time

Average elongation rate for 
corresponding mRNA

Sophia Rudorf
Jan Trösemeier
Christel Kamp
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