Protein Synthesis by Ribosomes

Reinhard Lipowsky Theory & Biosystems, MPI-KG, Potsdam-Golm

- Intro I: Biomolecular Machines
- Intro II: Stochastic Processes
- Protein Synthesis by Ribosomes
- Kinetics In Vivo and In Vitro
- Kinetic Distance Minimization
- Outlook

Biomolecular Machines

• Stepping motors

• Motor teams

• Actin filaments

• Ribosomes

Multiscale Motor Systems

• ATP hydrolysis ~ 1 nm

• Mechanical steps ~ 10 nm

- Cargo transport by motor teams ~ 100 μm
- •Traffic of many motors/cargos and traffic phase transitions ³

Stochastic Modelling I

• Stochastic processes on discrete state spaces

• Motor Teams Klumpp, RL, *PNAS* (2005) Müller ... RL, *PNAS* (2008)

Motor Traffic as ASEPs
 + Diffusion

RL ... Nieuwenhuizen, PRL (2001)

Stochastic Modelling II

- Stochastic processes on discrete state spaces
- Actin Filaments, space of patterns of T, P_i, and D subunits

Continuous Time Markov Processes

- Discrete state space with states i
- Transitions lij> from state i to state j with rate ω_{ij}
- Transition rates ω_{ij} can be measured
- State space + rates: continuous time Markov process (CTMP)
- Time evolution for probabilities P_i :

 $d P_i / dt = -\sum_j [P_i \omega_{ij} - P_j \omega_{ji}]$

- In general, backward transitions |ji> with rates ω_{ji}
- CTMPs provide general theoretical framework
- In practice, identify states and transitions, specify rates

(Ir)Reversible Transitions

- Reversible transition lij>: appreciable rate ω_{ji} for lji>
- Irreversible transition lij> : negligible rate ω_{ji} , put $\omega_{ji} = 0$
- Thermodynamics: no irreversible transitions
- Biochemistry: rates ω_{ji} too small to be measurable, put $\omega_{ji} = 0$

- Steady state: $d P_i / dt = 0$
- Local excess fluxes $\Delta J_{ij} = P_i \omega_{ij} P_j \omega_{ji}$
- Local detailed balance: $\Delta J_{ij} = P_i \omega_{ij} P_j \omega_{ji} = 0$

Protein Synthesis by Ribosomes

- Molecular Components
- Elongation Cycle
- Competition between tRNAs

Sophia Rudorf

- In Vivo from In Vitro rates:
 - Similarity measure = kinetic distance Minimization of kinetic distance Validation of predicted rates

Speed of Ribosomes

How long does it take for the ribosome to move to the next codon? How long does it take to add a single amino acid to the chain? 9

Ribosome + mRNA + tRNAs

TC = ternary complex = tRNA + EF-Tu + GTP

EF-Tu = most abundant protein

- Ribosome steps along codons of mRNA (purple -> green) consuming one ternary complex at each codon
- Elongation cycle during one step:

Decoding of codon by binding/accommodation of tRNA Elongation of growing peptide chain by one amino acid Translocation of mRNA together with two tRNAs

Single Elongation Cycle

• Complexity of decoding:

61 different codons and 43 elongator tRNA species (E. coli)

Codon-tRNA Relationships

- cognate = green
- near-cognate = yellow
- non-cognate = red/purple
- cognate decoding
 => correct amino acid
- near-cognate decoding
 => incorrect amino acid
- non-cognate tRNAs are released after initial binding

Single Elongation Cycle - Refined

• Possible binding of cognate/near-cognate/non-cognate tRNAs:

• Competition between cognate, near-cognate, and non-cognate tRNAs

Markov Process

Rudorf ... RL, PLoS Comp Biol (2014)

• Map cartoon of multistep process onto Markov chain:

• Individual transitions:

initial binding, recognition, initial selection, GTP hydrolysis, phosphate release, proof reading, full accommodation

- All transition rates ω_{ij} have been measured in vitro
- Some rates identical for cognates and near-cognates

Transition Rates in vitro

Rates	k-not.	$20^{\circ}\mathrm{C}$	37 °C	Units
$\kappa_{\rm on}$	k_1	140 ± 20	175 ± 25	$\frac{1}{\mu M s}$
ω_{off}	k_{-1}	85 ± 25	700 ± 270	1/s
$\omega_{ m rec}$	k_2	180 ± 30	1500 ± 450	1/s
ω_{21}	$k_{-2,co}$	0.2 ± 0.03	2 ± 0.6	1/s
ω_{23}	$k_{3,\mathrm{co}}$	190 ± 30	1500 ± 450	1/s
$\omega_{\rm con}$	k_4	50	450	1/s
ω_{45}	$k_{5,\mathrm{co}}$	22 ± 4	200 ± 40	1/s
ω_{40}	$k_{7,co}$	0.1	1	1/s
ω_{76}	$k_{-2,\mathrm{nr}}$	140 ± 20	1100 ± 330	1/s
ω_{78}	$k_{3,\mathrm{nr}}$	0.6 ± 0.1	7 ± 2	1/s
$\omega_{9,10}$	$k_{5,\mathrm{nr}}$	0.06 ± 0.006	0.26 ± 0.04	1/s
ω_{90}	$k_{7,\mathrm{nr}}$	0.84 ± 0.08	4 ± 0.7	1/s
$\omega_{ m pro}$		3 ± 1	150 ± 50	1/s
$\omega_{ m elo}$		0.8 ± 0.2	6.9 ± 2.3	aa/s

15

Ribosome + mRNA + tRNAs

tRNA + EF-Tu + GTP = ternary complex

- Ribosome steps along codons of mRNA (purple -> green)
- Elongation cycle during one step:

Decoding of codon by binding/accommodation of tRNA Elongation of growing peptide chain by one amino acid Translocation of mRNA together with two tRNAs

In Vitro versus In Vivo

- *In vitro*: Set of individual transition rates ω_{ij} Wohlgemuth ... Rodnina, *Phil. Trans. Roy. Soc. B* (2011)
- *In vivo*: Individual rates cannot be measured but overall speed of ribosomes can be determined
- Discrepancy for ribosome speed = peptide synthesis rate: In vivo value >> in vitro value
- Ehrenberg group concludes from competition effect: in vivo values of ω_{off} must be 10000 times larger than in vitro values !
 - Johansson ... Ehrenberg, Curr. Op. Microbiology (2008)

'Similarity' of In Vitro and In Vivo?

• Multistep process with many individual transitions

- Set of in-vitro rates $\omega_{ij} \Leftrightarrow$ Set of in-vivo rates ω_{ij}^*
- How 'similar' or 'close' are the in-vivo to the in-vitro rates ?
- Quantitative measure for such a 'similarity'?

Kinetic Distance: Single Transition

Rudorf ... RL, PLOS Comp Biol (2014)

*

- Consider single transition from state i to state j
- Transition rates: In-vitro value ω_{ij} , in-vivo value ω_{ij}
- Naive distance: Absolute value of $\omega_{ij} \omega_{ij}$
- But: could equally well consider transition times $\tau_{ij} = 1/\omega_{ij}$ and $\tau^*_{ij} = 1/\omega^*_{ij}$
- Kinetic distance D_{ii} for single transition:

$$D_{ij}(\omega_{ij}, \omega_{ij}^{*}) = D_{ij}(\tau_{ij}, \tau_{ij}^{*}) = D_{ij}(1/\omega_{ij}, 1/\omega_{ij}^{*})$$

• Simplest expression that fulfills this requirement:

$$D_{ij}(\omega_{ij}, \omega_{ij}^*) = |\ln(\omega_{ij}^*/\omega_{ij})| = |\Delta_{ij}|$$
¹⁹

Kinetic Distance: Interpretation

• Arrhenius form of transition rates:

$$\omega_{ij} = v_{ij} \exp[-\Delta G_{ij} / kB T]$$

$$\uparrow$$
attempt frequency
free energy barrier

• Coordinates $\Delta_{ij} = \ln(\omega_{ij}/\omega_{ij}^*)$ represent 'single barrier shifts'

Kinetic Distance: Multistep Process

- Set of in-vitro rates ω_{ij} , set of in-vivo rates ω_{ij}^*
- Define 'single barrier shifts'

$$\Delta_{ij} = \ln(\omega_{ij}^* / \omega_{ij})$$

$$\uparrow$$
in vivo
in vitro

• Multi-dimensional space with coordinates Δ_{ii}

3-dimensional subspace corresponding to three individual rates

12 distinct rates for elongation ,,translation in 12 dimensions"

Kinetic Distance: Multistep Process

• Kinetic distance = Euclidean distance in Δ_{ij} –space:

$$\mathcal{D} \equiv \sqrt{\sum \Delta_{ij}^2} = \sqrt{\sum \left[\ln(\omega_{ij}^* / \omega_{ij}) \right]^2}$$

- What about ,weight factors'? Δ_{ij} replaced by $u_{ij} \Delta_{ij}$
- Limit of single transition \Rightarrow all $u_{ij} = 1$
- Two different assays, A1 and A2
- Change from A1 to A2 leads to simple coordinate transformation
 = shift of origin

Minimization of Kinetic Distance

- Individual transition rates are not known *in vivo* but overall *in-vivo* speed is known (for different conditions)
- Minimize kinetic distance between known *in-vitro* rates and unknown *in-vivo* rates under overall constraint
- Multi-dimensional Δ_{ij} space:

constraint => hypersurface
with possible in-vivo points

Predicted In-Vivo Point

• Single barrier shifts $\Delta_{ii} = \ln(\omega_{ii}^*/\omega_{ii})$

Codon-specific Elongation Rates

- Each codon characterized by a different set of cognate/near-cognate/non-cognate tRNAs
- Initial binding leads to codon-specific elongation rates:

• Pearson correlation coefficient = 0.73 (or 0.56)

26

Validation by In-Vivo Data II

Sorensen + Pedersen, J. Mol. Biol. (1991)

- Uptake of radioactive S-methionine into β -galactosidase
- Simulation with codon-specific elongation rates

27

Validation by In-Vivo Data III

Kramer + Farabough, RNA (2007)

- Missense error frequency = probability to fully accommodate certain tRNA at one of its near-cognate codons
- Error frequency depends on codon usage p_c
- Error frequency for tRNA-Lys measured to be 2×10^{-4}
- Predicted in vivo rates lead to 3×10^{-4}

Good agreement with three independent sets of in vivo data without any fit parameter !

General Computational Method

- Applicable to any multistep process
- Global method with unique solution or discrete set of solutions (bifurcation)
- Applicable to highly nonlinear constraints
- No a priori bias about importance of different transitions (,,Principle of least prejudice")
- Comparison with Flux Control Analysis (FCA): FCA is local, restricted to linear response, no metric, i.e., provides only direction in Δ_{ij} – space but no distance

Summary

- Protein Synthesis by Ribosomes Competition between different tRNA species
- Kinetics in vivo and in vitro Long controversy about (dis)similarity
- Kinetic distance (Dis)similarity measure for multi-step process
- Kinetic distance minimization Minimal distance of in-vitro point from in-vivo hyper-surface
- General computational method

Refined Modelling

Rudorf, RL, PLoS ONE (2015)

- Distinguish TC concentration from total tRNA concentration
- Important subpopulation: uncharged but bound to ribosome
- Include recharging cycle of tRNA
- Release of tRNA from E site
- Immediate release: 2-1-2 process
- Delayed release: 2-3-2 process

Extension to Human Cells

• Scatter plot for 7500 genes of Hela cells:

Sophia Rudorf Jan Trösemeier Christel Kamp

Average elongation rate for corresponding mRNA

Coworkers

Single Motors Steffen Liepelt Aliaksei Krukau Volker Knecht

Motor Teams

Stefan Klumpp Melanie Müller Corina Keller Florian Berger

Gero Steinberg Martin Schuster

Actin Filaments

Thomas Niedermayer Jan Kierfeld

Marie-France Carlier G. Romet-Lemonne **Ribosomes** Sophia Rudorf Marina Rodnina Michael Thommen Jan Trösemeier

Christel Kamp

Active nightlife in Golm-Potsdam! ³³