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Biomolecular Machines

• Stepping motors • Motor teams

• Actin filaments
• Ribosomes
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Mechano-Enzymes

• Biomolecular machines: 
Conversion of chemical energy
into mechanical work

• Universal chemical energy source
provided by NTP = ATP, GTP, ...                                    

”Human body hydrolyses and synthesizes 60 kg of ATP per day!"

• Hydrolysis of NTP:    NTP   ->   NDP + P

• Synthesis of NTP:   NTP   <- NDP + P

1.7 nm

Nucleotides
NTP, NDP, P
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Multiscale Motility of Motors

ATP Binding            Mechanical Steps                 Transport

• Example: Kinesin at Microtubules

Nucleotide Binding 
Pocket ~  1 nm 

Single head 
moves by 16 nm

Cargo transport
over cm or m !

10-3 s 10-6 s 104 - 106 s
Hierarchy of Time Scales   ≠  Hierarchy of Length Scales 4



Modelling Bottom-Up

Single motor head      Two-headed motor         Two motors

Rebinding
Unbinding Unbinding
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Chemomechanics of Single Motors

• Stepping motor kinesin

• Single motor domain or head

• Kinesin as (mechano-2-) enzyme

• Balance conditions for motor cycles

• Motor unbinding and run length
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Stepping Motors
• Filament = F-Actin 

• Each motor has two heads that hydrolyze ATP
• Each motor makes steps with nanometer step size

Dyneins                 Kinesins
to minus end         to plus end

Myosin VI           Myosin V
to minus end        to plus end

• Filament = Microtubule
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Single Motor Domain of Kinesin

• Microtubule binding site

Important subdomains:

• Neck linker

• Nucleotide binding pocket

NL + a6 helix

L9 loop + a3 helix (+ ATP)

L11 loop + a4 helix

Krukau, Knecht, RL, PCCP (2014)
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Validation via  Crystal Structure

• Crystal structure of T state

• Unit cell contains 4 motor domains

• Crystal stucture as initial configuration

• Stability of structure confirmed by
MD simulations over 300 ns

• Small rotations but consistent with 
resolution of X-ray diffractions

• Validation of simulation code
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Motor attached to Tubulin Dimer
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Nucleotide States of Single Head

• Nucleotide Binding Pocket (NBP)

NBP can
- be occupied by ATP  
- be occupied by ADP 
- be empty  

• ATP cleavage and phosphate release take about 10 ms 
=> too long for brute force MD

• Dominant conformations for E, T, and D states

• Comparison of these states => conformational transitions

T
D
E
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Phosphate Release: Allosteric Coupling
• Transition from T to D state
• Change in L9 loop

• Rotation of a4 helix
• Rotation of a6 helix 
• Undocking of neck linker

red: T state,     blue: D state 12



Stochastic Modelling

• Single head = single ATPase has 3 states:     

empty: i = E
bound ATP: i = T
bound ADP: i = D

• In each state,  head can attain  many atomistic conformations:

Each state i =  ensemble
of substates (i, ki)

arrows = chemical transitions

Liepelt, RL, EPL  77 (2007); Phys. Rev. Lett. 98 (2007)
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Statistical Mech of Substates

• Single head coupled to heat 
reservoir at temperature T 

• Separation of time scales:   

Thermal equilibration fast compared to chemical transitions

Each state i is thermally equlibrated

• Substate (i, ki) has energy E(i, ki)

• Probability to find system in substate (i, ki)     

Boltzmann factor B(i, ki) =  exp[ - E(i, ki) / kB T ]

• Partition sum:  Zi = S B(i, ki)  =>  State properties:

Helmholtz free energy, Internal energy, Entropy 14



Transition Rates
• Forward and backward transitions between two states i and j

• Associated transition rates:   wij from state i to state j 

wji from state j to state i

wTD = kTD

wDT = kDT [P]wDE = kDE

wED = kED [ADP]

wET = kET [ATP]
wTE = kTE
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Chemical Reservoirs
• Single head = single ATPase coupled to Chemical Reservoirs: 

• Chemical reservoirs for X = ATP, ADP, and P

Activities [X]  ~  molar concentrations  
Chemical potentials µ(X) = kB T ln( [X] / [X]* )

Activity scales [X]*
16



Chemical (Non)Equilibrium

• ATP Hydrolysis:  ATP  <=>  ADP + P

Chemical energy change 
per hydrolysed ATP : 

• Equilibrium constant Keq
determined by three activity scales

• Chemical equilibrium Dµ = 0

• ATP hydrolysis and  synthesis for Dµ >  0 and  Dµ <  0

Dµ = µ(ATP) - µ(ADP) - µ(P)

=  kB T  ln 
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Cycles and Dicycles
• Cycle = cyclic sequence of states and edges
Each cycle = two directed cycles = dicycles Cn

d with d = ±

1 cycle 
= 2 dicycles

• Hydrolysis dicycle |ETDE> : Chemical energy input: + Dµ

• Synthesis dicycle |EDTE> : Chemical energy input: - Dµ

• Single motor domain or single head:
3-state model represents a unicycle model
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Steady State Entropy Production
• Statistical (or Shannon-) entropy:  S = - kB Σ Pi ln(Pi)  

• Master equation for Pi  :  d S / dt =  spr + sfl

• Steady state: d S / dt = 0   => spr  = - sfl

• Entropy produced per completed dicycle:

DS (Cn
d)  =  kB ln( Xn

d )      with Xn
d =

sum over all dicycles frequency of dicycle completion

• Equilibrium state:  DS (Cn
d) = 0 19



Unicycle Model for Single Head
• Explicit dependence on concentrations [T], [P], and [D]:  

T DS (Cn
d)  = kB ln( Xn

d )  =  kB ln(B/Keq ) +  Dµ

Xn
d = B exp[Dµ / kB T] / Keq     with conc-independent B

wDT = kDT [P]wED = kED [ADP]

wET = kET [ATP]

• Chemical equilibrium: Dµ = 0,  DS = 0   =>  B = Keq

• Relation between rates and equilibrium constant, 
simple example for balance condition 20



• Chemomechanics of Single Motors

• Motor Properties of Kinesin 

• Cyclic Balance Conditions

• Transport by two Molecular Motors

• Outlook

21



Kinesin as 2-Enzyme Complex

• Kinesin has two motor heads

• Each head can attain 3 states E, T, D
that form one chemical cycle

• States + transitions define
chemical network with many cycles

• Two heads can attain 3x3 = 9 states
with 2 x 18 = 36 transitions
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xn xn+1

Mechanical Transitions
• Mechanical transitions =  Spatial displacement  along filament

• Discrete step size  l defines lattice of motor positions:

x

• Mechanical transitions from 
chemical state at site xn to  chemical state at site xn+1

l
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Chemomechanics of Kinesin
• Nucleotide-depending binding of kinesin: 

E, T strongly bound, D weakly bound

• For EE and TT, both heads are strongly 
• Reduced network without EE and TT states:

• Hand-over-hand motion: DT -> TD  or DE -> ED
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Kinesin: Theory + Experiment

• Data of  Carter,  Cross (2005) • Data of  Visscher et al (1999)

• Data of  Schief et al (2004)

• Data of  Schnitzer et al (2000)
on run length as a function of 
force and [ATP]
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Kinesin: Several Motor Cycles

• Small ADP and P, small load force: dicycle |25612>
• Small ADP and P, large load force: dicycle |52345>
• Large ADP, small load force: dicycle |25712>

Three chemomechanical 
motor cycles

Dominat cycle depends on 
Concentr of ATP, ADP, P and load force 

Liepelt, RL, Phys. Rev. Lett. 98 (2007)

• Graph theory: three fundamental cycles  =>  
three independent conditions on w-products  Xn

d 26



Balance Conditions for Cycles 

• Special case: Enzymes without  mechanical work

Relation between kinetics and thermodynamics  
Thermodynamics imposes constraints on  kinetics

• Entropy produced per completed dicycle Cn
d in steady state:

DS (Cn
d)  =  kB ln( Xn

d )      with  Xn
d =         

• Balance condition for each dicycle Cn
d : 

kBT  ln( Xn
d )  =   Dµ(Cn

d) - Wme(Cn
d) = - kBT  ln( Xn

-d )

Haldane (1965) 

• No dependence on state functions Ui , Si ,  Gi
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Classification of Cycles

• Balance condition for each directed cycle Cn
d : 

kBT  ln( Xn
d )  =   Dµ(Cn

d) - Wme(Cn
d)  

• Detailed balance:            Dµ(Cn
d) = 0  and  Wme(Cn

d) = 0

• Mech nonequilibrium:    Dµ(Cn
d) = 0  and Wme(Cn

d) ≠ 0     

• Chem nonequilibium:     Dµ(Cn
d) ≠ 0  and Wme(Cn

d) = 0   

• Chemomech coupling: Dµ(Cn
d) ≠ 0  and Wme(Cn

d) ≠ 0

Classification of  cycles: 
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Force as Control Parameter

• Motors attached to beads, force applied to beads via laser trap

• Gliding assay:

minus plus

minus plus

• Bead assay: 
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Force-Velocity  Relationship

• Motor velocity v decreases with increasing force F

• Velocity vanishes at stall force Fs
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XF   =                               =   exp(- Wme/ kBT ) 

X =                               =   X0   XF

Force Dependence
• Force (F) dependence of transition rates wij : 

wij  =  wij,0 Fij(F) with    Fij(0) = 1

• Factorization of   w-products: 

• Cycle contains a single mechanical transition |ab> :
Fab(F) / Fba(F) =  exp(- Wme / kBT ) =  exp(- F / kBT ) 
Fij(F) / Fji(F)  = 1     for  |ij>  ≠    |ab>
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Unbinding of Kinesin

• Chemomechanical network with 
bound states i = 1, ..., 7
plus unbound state i = 0

• Thermal noise leads to unbinding
of single motor from filament

• Unbinding rate esi is F-dependent: 

esi ~ exp(F/Fd)
Detachment force Fd
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Run Length of Kinesin
• (Average) run time =  inverse unbinding rate

• (Average) run length = velocity · run time = v / esi

• Agreement with experimental data on kinesin-1:
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Run length decreases with increasing force F
and increases with increasing [ATP]
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Intracellular Cargo Traffic
• Example: Neuron, axon, and synapse

• Each cargo pulled by several motors:

• Uni-directional transport by one motor team
• Bi-directional transport by two motor teams
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Transport by Two Molecular Motors
• Cargo pulled by two (identical) motors
• Each motor has a finite run length
• Start with  cargo pulled by one motor  =  1-motor run
• Rebinding of unbound motor: 1-motor run becomes 2-motor run

1-motor run 2-motor run 1-motor run unbound cargo

Rebinding
Unbinding Unbinding

• Unbinding of bound motor: 2-motor run becomes 1-motor run
• Unbinding of remaining motor: unbound cargo  
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Elastic Coupling between Motors
• Motor stalks attached to common cargo
• Both motors step stochastically (forward steps to the right)

• Effective spring with spring constant K

Extension DL leads to mutual force   F = K DL

trailing leading

step by leading motor,
built-up of force F 

relaxed springs, 
mutual force F = 0

several steps by 
leading motor

• New force scale: Strain force FK = K · step size 37



Theoretical Description

• Motors as mechano-enzymes: 

Each motor has two motor heads that hydrolye ATP
Use  chemomechanical network for single motor
Case study: kinesin

• Motors as stochastic steppers: 

Each motor steps forward and backward, unbinds and rebinds
Use experimental  force-velocity relationship  
Available  for different kinesins, dyneins ...

Keller et al, J. Stat. Phys. (2013)

Berger et al, Phys. Rev. Lett. (2012)
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Motors as Mechano-Enzymes

• Each motor can attain 
seven bound states i = 1, ..., 7
plus unbound state i = 0

• Two internal coordinates
leading motor ile = 1, ..., 7, 0
trailing motor  itr = 1, ..., 7, 0

• Third coordinate = spring extension 
DL  = F/K

trailing leading
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Subspace of Motor Couple with DL = 0 

internal state ile

of leading motor 

internal state itr

of trailing motor 
spring 
extension DL

1-motor runs on (ile,0) 'corner'state (0,0),
unbound cargo

1-motor runs 
on (0,itr)
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State Space of Motor Couple

DL-planes with 
constant DL

internal state ile

of leading motor 

internal state itr

of trailing motor 

neighboring DL-planes
connected by mechanical steps
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Only Two Additional Parameters
• Complex network but only two additional parameters, 
apart from single motor properties:

- Spring constant K of effective spring
- Rebinding rate psi of single, unbound motor

• Rebinding rate psi can be determined from 
statistical properties of 1-motor runs

• Spring constant K can be determined from 
statistical properties of 2-motor runs 42



Cargo Trajectories
• Determine spatial displacemens of cargo 
• Cargo position for 2-motor runs:  

8 nm displacements 
during 1-motor runs

4 nm displacements 
during 2-motor runs
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Cargo Trajectories II

• Average run time of 1-motor runs => rebinding rate psi

• Average run time of 2-motor runs => spring constant K 

dependence on 
ATP-concentration
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Motors as Stochastic Steppers

• Slow build-up of elastic strain: 
Spontaneous unbinding of one motor  

trailing leading

• Reduced state space with coordinate DL only

• Single step leads to strain force FK

• Fast build-up of elastic strain: 
Force-induced unbinding or 
Force-induced stalling of one motor 45



Different Transport Regimes

• Weak coupling regime: 

• Compare strain force FK with 
detachment force  Fd and stall force Fs 

Spontaneous unbinding of one motor

• Force-induced unbinding regime for Fd  «  Fs

• Force-induced stalling regime for Fs  «  Fd

• Strong coupling regime:    FK ≈ Fd ≈  Fs

FK small compared to  both Fs  and Fd

FK is comparable to Fd but small compared to  Fs

FK is comparable to Fs but small compared to  Fd
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Variation of Elastic Coupling
• Effective spring constant K as control parameter

• Variation in value of K: 
Different motor species explore different transport regimes

K

reduced stall force  Fs / FK

reduced
detachment
force Fd / FK
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Cargo Transport in General

• Transport by two antagonistic motor teams,
Stochastic tug-of-war

• Transport by N>2 identical motors 

Klumpp and RL, PNAS (2005)

Müller et al, PNAS (2008)
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Tug-of-War for Endosomes
• Dictyostelium: 

Several dyneins against one kinesin
Elongation of cargo during slow movements

Schuster .... Steinberg, 
PNAS (2011)

Soppina ... Mallik
PNAS  (2009)

• Fungus (Ustilago maydis): 
Binding and release of dynein 
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Motor Traffic:  
Patterns and Phase Transitions

• Tube with two open boundaries:
MT transitions related to ASEP phases

Phys. Rev. Lett. 96 (2006)

• Traffic of two motor species in tubes:
Symmetry breaking MT transition

• Traffic of filaments along substrates:
Isotropic-nematic MT transition 

J. Stat. Phys. 113 (2003)

Europhys. Lett. 66 (2004)
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Traffic in a half open tube 

• Half open tube:
left boundary open, reservoir of motors  = ‘cell body’
right boundary closed = ‘Synapse’

• (+) Motors (kinesins)
moving to the right

• (-) Motors (dyneins)
moving to the left

M. Müller et al,  J. Phys. CM 17 (2005)

Concentration gradients 
created by motors 51
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