Multiscale Motility of Molecular Motors

Reinhard Lipowsky MPI of Colloids and Interfaces, Potsdam

- Chemomechanics of Single Motors
- Motor Properties of Kinesin
- Cyclic Balance Conditions
- Transport by Two Molecular Motors
- Outlook

Biomolecular Machines

• Stepping motors

• Motor teams

• Actin filaments

• Ribosomes

Mechano-Enzymes

• Biomolecular machines:

Conversion of chemical energy into mechanical work

• Universal chemical energy source provided by NTP = ATP, GTP, ...

- Hydrolysis of NTP: NTP -> NDP + P
- Synthesis of NTP: NTP <- NDP + P

Nucleotides NTP, NDP, P

"Human body hydrolyses and synthesizes 60 kg of ATP per day!"

Modelling Bottom-Up

Single motor head

Two-headed motor

Two motors

Chemomechanics of Single Motors

- Stepping motor kinesin
- Single motor domain or head
- Kinesin as (mechano-2-) enzyme
- Balance conditions for motor cycles
- Motor unbinding and run length

Stepping Motors

• Filament = Microtubule

• Filament = F-Actin

Dyneins to minus end Kinesins to plus end Myosin VIMyoto minus endto p

Myosin V to plus end

- Each motor has two heads that hydrolyze ATP
- Each motor makes steps with nanometer step size

Single Motor Domain of Kinesin

Krukau, Knecht, RL, PCCP (2014)

Important subdomains:

- Neck linker
 NL + α6 helix
- Nucleotide binding pocket

L9 loop + α 3 helix (+ ATP)

• Microtubule binding site

L11 loop + α 4 helix

Validation via Crystal Structure

- Crystal structure of T state
- Unit cell contains 4 motor domains
- Crystal stucture as initial configuration
- Stability of structure confirmed by MD simulations over 300 ns
- Small rotations but consistent with resolution of X-ray diffractions
- Validation of simulation code

Motor attached to Tubulin Dimer

Nucleotide States of Single Head

• Nucleotide Binding Pocket (NBP)

NBP can

- be occupied by ATP T
- be occupied by ADP
- be empty

- ATP cleavage and phosphate release take about 10 ms
 => too long for brute force MD
- Dominant conformations for E, T, and D states
- Comparison of these states => conformational transitions

D

E

Phosphate Release: Allosteric Coupling

red: T state, blue: D state

- Transition from T to D state
- Change in L9 loop
- Rotation of α_4 helix
- Rotation of α_6 helix
- Undocking of neck linker

Stochastic Modelling

Liepelt, RL, EPL 77 (2007); Phys. Rev. Lett. 98 (2007)

• Single head = single ATPase has 3 states:

• In each state, head can attain many atomistic conformations:

Each state i = ensembleof substates (i, k_i)

Statistical Mech of Substates

- Single head coupled to heat reservoir at temperature T
- Separation of time scales:

Heat Reservoir Temperature T Single ATPase

Thermal equilibration fast compared to chemical transitions Each state i is thermally equilbrated

- Substate (i, k_i) has energy $E(i, k_i)$
- Probability to find system in substate (i, k_i)

Boltzmann factor $\mathcal{B}(i, k_i) = \exp[-E(i, k_i) / k_B T]$

• Partition sum: $Z_i = \sum \mathcal{B}(i, k_i) \implies$ State properties: Helmholtz free energy, Internal energy, Entropy

Transition Rates

- Forward and backward transitions between two states i and j
- Associated transition rates: ω_{ij} from state i to state j ω_{ii} from state j to state i

Chemical Reservoirs

• Single head = single ATPase coupled to Chemical Reservoirs:

• Chemical reservoirs for X = ATP, ADP, and P

Activities [X] ~ molar concentrations Chemical potentials $\mu(X) = k_B T \ln([X] / [X]^*)$ Activity scales [X]*

Chemical (Non)Equilibrium

• ATP Hydrolysis: ATP <=> ADP + P

Chemical energy change per hydrolysed ATP :

$$\begin{split} \Delta \mu &= \mu(\text{ATP}) - \mu(\text{ADP}) - \mu(\text{P}) \\ &= k_{\text{B}} T \ln \left(\mathsf{K}_{\text{eq}} \frac{[\text{ATP}]}{[\text{ADP}] [\text{P}]} \right) \end{split}$$

- Equilibrium constant K_{eq} determined by three activity scales
- Chemical equilibrium $\Delta \mu = 0$
- ATP hydrolysis and synthesis for $\Delta \mu > 0$ and $\Delta \mu < 0$

Cycles and Dicycles

- Cycle = cyclic sequence of states and edges Each cycle = two directed cycles = dicycles C_v^d with d = \pm
- Single motor domain or single head:
 3-state model represents a unicycle model

- Hydrolysis dicycle |ETDE> : Chemical energy input: + $\Delta\mu$
- Synthesis dicycle |EDTE> : Chemical energy input: $\Delta\mu$

Steady State Entropy Production

- Statistical (or Shannon-) entropy: $S = -k_B \Sigma P_i \ln(P_i)$
- Master equation for P_i : $dS / dt = \sigma_{pr} + \sigma_{fl}$
- Steady state: $dS / dt = 0 \implies \sigma_{pr} = -\sigma_{fl}$

$$\sigma_{\rm pr}^{\rm st} = \sum_{\nu} \sum_{d=\pm} \Omega^{\rm st}(\mathcal{C}^d_{\nu}) \Delta S(\mathcal{C}^d_{\nu})$$

sum over all dicycles frequency of dicycle completion

• Entropy produced per completed dicycle:

$$\Delta S(C_v^d) = k_B \ln(\Xi_v^d) \quad \text{with } \Xi_v^d = \prod_{ij>}^{\nu,d} (\omega_{ij} / \omega_{ji})$$

• Equilibrium state:
$$\Delta S(C_v^d) = 0 \quad 19$$

Unicycle Model for Single Head

• Explicit dependence on concentrations [T], [P], and [D]:

 $\Xi_{v}^{d} = B \exp[\Delta \mu / k_{B} T] / K_{eq} \text{ with conc-independent } B$ $T \Delta S (C_{v}^{d}) = k_{B} \ln(\Xi_{v}^{d}) = k_{B} \ln(B/K_{eq}) + \Delta \mu$

- Chemical equilibrium: $\Delta \mu = 0$, $\Delta S = 0 \implies B = K_{eq}$
- Relation between rates and equilibrium constant, simple example for balance condition

- Chemomechanics of Single Motors
- Motor Properties of Kinesin
 - Cyclic Balance Conditions
 - Transport by two Molecular Motors
 - Outlook

Kinesin as 2-Enzyme Complex

- Kinesin has two motor heads
- Each head can attain 3 states E, T, D that form one chemical cycle
- Two heads can attain 3x3 = 9 states with 2 x 18 = 36 transitions
- States + transitions define chemical network with many cycles

Mechanical Transitions

- Mechanical transitions = Spatial displacement along filament
- Discrete step size *l* defines lattice of motor positions:

• Mechanical transitions from chemical state at site x_n to chemical state at site x_{n+1}

Chemomechanics of Kinesin

- Nucleotide-depending binding of kinesin:
 E, T strongly bound, D weakly bound
- Hand-over-hand motion: DT -> TD or DE -> ED

5

24

2

E0

• Reduced network without EE and TT states:

Kinesin: Theory + Experiment

• Data of Schief et al (2004)

• Data of Visscher et al (1999)

• Data of Schnitzer et al (2000) on run length as a function of force and [ATP]

Kinesin: Several Motor Cycles

Liepelt, RL, Phys. Rev. Lett. 98 (2007)

Three chemomechanical motor cycles

Dominat cycle depends on Concentr of ATP, ADP, P and load force

- Small ADP and P, small load force: dicycle |25612>
- Small ADP and P, large load force: dicycle |52345>
- Large ADP, small load force: dicycle |25712>
- Graph theory: three fundamental cycles =>three independent conditions on ω -products Ξ_v^{d}

Balance Conditions for Cycles

- Entropy produced per completed dicycle C_v^d in steady state: $\Delta S(C_v^d) = k_B \ln(\Xi_v^d) \quad \text{with } \Xi_v^d = \prod_{iii>}^{v,d} (\omega_{ij} / \omega_{ji})$
- Balance condition for each dicycle C_v^{d} :

$$k_{\rm B}T \ln(\Xi_{\rm v}^{\rm d}) = \Delta \mu(C_{\rm v}^{\rm d}) - W_{\rm me}(C_{\rm v}^{\rm d}) = -k_{\rm B}T \ln(\Xi_{\rm v}^{\rm -d})$$

Relation between kinetics and thermodynamics Thermodynamics imposes constraints on kinetics

- Special case: Enzymes without mechanical work Haldane (1965)
- \bullet No dependence on state functions U_i , $S_{i\,_{}}\,G_i$

Classification of Cycles

• Balance condition for each directed cycle C_v^{d} :

$$k_{\rm B}T \ln(\Xi_v^{\rm d}) = \Delta\mu(C_v^{\rm d}) - W_{\rm me}(C_v^{\rm d})$$

Classification of cycles:

- Detailed balance: $\Delta \mu(C_v^d) = 0$ and $W_{me}(C_v^d) = 0$
- Mech nonequilibrium: $\Delta \mu(C_v^d) = 0$ and $W_{me}(C_v^d) \neq 0$
- Chem nonequilibium: $\Delta \mu(C_v^d) \neq 0$ and $W_{me}(C_v^d) = 0$
- Chemomech coupling: $\Delta \mu(C_v^d) \neq 0$ and $W_{me}(C_v^d) \neq 0$

Force as Control Parameter

- Motors attached to beads, force applied to beads via laser trap
- Bead assay:
- Gliding assay:

Phys. Rev. Lett. (2007) Exp. data: Carter and Cross, Nature (2005) Theory: Liepelt and RL,

30

Force-Velocity Relationship

- Motor velocity v decreases with increasing force F
- Velocity vanishes at stall force F_s

Force Dependence

• Force (F) dependence of transition rates ω_{ij} :

 $\omega_{ij} = \omega_{ij,0} \Phi_{ij}(F)$ with $\Phi_{ij}(0) = 1$

• Factorization of ω -products:

$$\Xi = \prod_{ij>}^{\nu,d} (\omega_{ij} / \omega_{ji}) = \Xi_0 \Xi_F$$
$$\Xi_F = \prod_{ij>}^{\nu,d} (\Phi_{ij} / \Phi_{ji}) = \exp(-W_{me} / k_B T)$$

• Cycle contains a single mechanical transition lab> :

 $\Phi_{ab}(F) / \Phi_{ba}(F) = \exp(-W_{me} / k_B T) = \exp(-\ell F / k_B T)$ $\Phi_{ij}(F) / \Phi_{ji}(F) = 1 \quad \text{for } |ij\rangle \neq |ab\rangle$

Unbinding of Kinesin

- Thermal noise leads to unbinding of single motor from filament
- Unbinding rate ε_{si} is F-dependent:

 $\varepsilon_{si} \sim \exp(F/F_d)$ Detachment force F_d

• Chemomechanical network with bound states i = 1, ..., 7 plus unbound state i = 0

Run Length of Kinesin

- (Average) run time = inverse unbinding rate
- (Average) run length = velocity \cdot run time = v / ε_{si}
- Agreement with experimental data on kinesin-1:

Run length decreases with increasing force F and increases with increasing [ATP]

- Chemomechanics of Single Motors
- Motor Properties of Kinesin
- Cyclic Balance Conditions
- Transport by two Molecular Motors
 - Outlook

Intracellular Cargo Traffic

• Example: Neuron, axon, and synapse

- Each cargo pulled by several motors:
 - Uni-directional transport by one motor team
 - Bi-directional transport by two motor teams

Transport by Two Molecular Motors

- Cargo pulled by two (identical) motors
- Each motor has a finite run length
- Start with cargo pulled by one motor = 1-motor run
- Rebinding of unbound motor: 1-motor run becomes 2-motor run

- Unbinding of bound motor: 2-motor run becomes 1-motor run
- Unbinding of remaining motor: unbound cargo

Elastic Coupling between Motors

- Motor stalks attached to common cargo
- Both motors step stochastically (forward steps to the right)

relaxed springs, mutual force F = 0 step by leading motor, built-up of force F several steps by leading motor

- Effective spring with spring constant K Extension ΔL leads to mutual force $F = K \Delta L$
- New force scale: Strain force $F_K = K \cdot \text{step size}$

Theoretical Description

• Motors as mechano-enzymes:

Keller et al, J. Stat. Phys. (2013)

Each motor has two motor heads that hydrolye ATP Use chemomechanical network for single motor Case study: kinesin

• Motors as stochastic steppers:

Berger et al, Phys. Rev. Lett. (2012)

Each motor steps forward and backward, unbinds and rebinds Use experimental force-velocity relationship Available for different kinesins, dyneins ...

Motors as Mechano-Enzymes

- Each motor can attain seven bound states i = 1, ..., 7 plus unbound state i = 0
- Two internal coordinates leading motor $i_{le} = 1, ..., 7, 0$ trailing motor $i_{tr} = 1, ..., 7, 0$

• Third coordinate = spring extension $\Delta L = F/K$

Subspace of Motor Couple with $\Delta L = 0$

State Space of Motor Couple

² internal state i_{tr}
¹ of trailing motor

i_{tr}

neighboring Δ L-planes connected by mechanical steps

Only Two Additional Parameters

- Complex network but only two additional parameters, apart from single motor properties:
 - Spring constant K of effective spring
 - Rebinding rate π_{si} of single, unbound motor
- Rebinding rate π_{si} can be determined from statistical properties of 1-motor runs

• Spring constant K can be determined from statistical properties of 2-motor runs

Cargo Trajectories

- Determine spatial displacemens of cargo
- Cargo position for 2-motor runs:

$$\bar{x}_{\rm ca} = \frac{1}{2}(x_{\rm le} + x_{\rm tr})$$

1

Cargo Trajectories II

- Average run time of 1-motor runs => rebinding rate π_{si}
- Average run time of 2-motor runs => spring constant K

Motors as Stochastic Steppers

- Reduced state space with coordinate ΔL only
- Single step leads to strain force F_K
- Slow build-up of elastic strain: Spontaneous unbinding of one motor
- Fast build-up of elastic strain: Force-induced unbinding or Force-induced stalling of one motor

Different Transport Regimes

- Compare strain force F_K with detachment force F_d and stall force F_s
- Weak coupling regime:

 F_K small compared to both F_s and F_d Spontaneous unbinding of one motor

- Force-induced unbinding regime for $F_d \ll F_s$ F_K is comparable to F_d but small compared to F_s
- Force-induced stalling regime for $F_s \ll F_d$

 F_K is comparable to F_s but small compared to F_d

• Strong coupling regime: $F_K \approx F_d \approx F_s$

Variation of Elastic Coupling

- Effective spring constant K as control parameter
- Variation in value of K:

Different motor species explore different transport regimes

Cargo Transport in General

• Transport by N>2 identical motors

Klumpp and RL, *PNAS* (2005)

• Transport by two antagonistic motor teams, Stochastic tug-of-war Müller et al, *PNAS* (2008)

Tug-of-War for Endosomes

• Dictyostelium: Several dyneins against one kinesin Elongation of cargo during slow movements

Soppina ... Mallik PNAS (2009)

• Fungus (Ustilago maydis): Binding and release of dynein

Schuster Steinberg, PNAS (2011)

Motor Traffic: Patterns and Phase Transitions

 Tube with two open boundaries: MT transitions related to ASEP phases

• Traffic of two motor species in tubes: Symmetry breaking MT transition

• Traffic of filaments along substrates: Isotropic-nematic MT transition

J. Stat. Phys. 113 (2003)

Europhys. Lett. 66 (2004)

Phys. Rev. Lett. 96 (2006)

Traffic in a half open tube

M. Müller et al, J. Phys. CM 17 (2005)

• Half open tube:

left boundary open, reservoir of motors = 'cell body'
right boundary closed = 'Synapse'

• (+) Motors (kinesins) moving to the right

• (-) Motors (dyneins) moving to the left

Concentration gradients created by motors

Max Planck Institute of Colloids and Interfaces Active Night Life !

52