Bottom-Up Approach to Synthetic Cells

Reinhard Lipowsky MPI of Colloids and Interfaces, Potsdam-Golm

- From Matter to Life
- Three Basic Modules:
 - Compartments, Motors, Assemblers
- New Platform for Bottom-Up Assembly
- Future Challenges

From Molecules to Cells

Transition Zone

Aqueous Solution			••••		
Monomers	Polymers	Biocolloids Biomodules		Prokaryotes Organelles	Eukaryotes

... Matter

Universal Architecture of All Cells

All present-day cells contain the same type of molecules and molecular processes -> All cells arose from a common ancestor

Origin of Life

Rough Time Schedule

- 4.6 Ga Solid earth
- 4.0 Ga Large lunar craters
- 3.8 Ga Sedimentary rock -> Water
- 3.5 Ga First microfossils resembling cyanobacteria = procaryotes?
- 1.8 Ga First microfossils resembling red algae = eukaryotes?
- ?.? Ga Invention of meiosis and sex
- 0.6 Ga Multicellular organisms

Prebiotic Synthesis of Amino Acids

• Miller and Urey Experiment (1953)

Aminosäure	Murchison- Meteorit	künstliche Ursuppe
Glycin		
Alanin		
α-Amino-n-Buttersäure		
α-Aminoisobuttersäure		• •
Valin		• •
Norvalin		
Isovalin	• •	• •
Prolin		•
Picolinsäure	•	•
Asparaginsäure		
Glutaminsäure		• •
β-Alanin	• •	• •
β-Amino-n-Buttersäure	•	•
β-Aminoisobuttersäure	•	•
γ-Aminobuttersäure	•	• •
Sarkosin	• •	
n-Ethylglycin	• •	
n-Methylalanin	• •	

Puzzle: Proteins + Nucleic Acids

• "Entanglement" of proteins and nucleic acids :

DNA contains blueprints of proteins Proteins perform replication, transcription of DNA

- Egg and hen problem, Eigen's paradoxon
- Common ancestor arose from prebiotic evolution: RNA world, iron-sulphur world, clay world ... ?

Approaching the Transition Zone

Bottom-Up -> <- Top-Down

Bottom-Up versus Top-Down

Bottom-Up: Synthetic Cells

- Develop important building blocks or modules
- Assemble these modules into larger structures
- Integrate more and more modules ...

Top-Down: Minimal Cells

- Start with relatively simple cells
- Eliminate more and more components
- Problem: many remaining genes with unknown functions

Three Basic Modules

- Membrane compartments, fluid architecture
- Molecular motors, free energy transduction

• Molecular assembly, ribosomes, protein synthesis

Membrane Fluidity

• Fluid membranes, i.e., fast lateral diffusion:

Diffusion constant ~ $\mu m^2/s$

- Lateral diffusion => Compositional responses, demixing, domain formation ...
- Flexibility => Morphological responses, budding, tubulation, ...
 Direct evidence for fluidity

lipid swapping ~ ns

40 μm

Multiresponsive Behavior

- Giant unilamellar vesicles (GUVs), tens of micrometers
- Remodelling in response to various perturbations:

Nanotubes from polymer adsorption, tube width ~ 100 nm Formation of intramembrane domains, 2D phase separation Small buds from protein adsorption, bud size ~ μm Remodelling by adhering or partially wetting droplets

Buds and Nanotubes

Liu et al, ACS Nano (2016)

13

- Lipid mixture of DOPC, DPPC, cholesterol
- Membranes labeled by fluorescent dyes
- Liquid-disordered (red) and liquid-ordered phase (green)

- Asymmetric environment, different PEG concentrations
- Deflation: Bud and tube formation without external forces
- Tubes can be necklace-like or cylindrical

Multi-Compartments from Curv Elasticity

• Buds and necklaces, uniform membranes: • Buds and necklaces, multi-domain membranes:

14

- Each shape = single membrane with membrane necks
- Each shape is stable for large parameter regime
- Key parameters: membrane area, vesicle volume, spontaneous (or preferred) curvature

Spontaneous Tension

RL, Faraday Discuss. (2013) Bhatia et al (under review)

- Spont curvature *m* generates spon tension $\sigma = 2 \kappa m^2$
- Micropipette aspiration of tubulated vesicle:

Initial aspiration up to hemispherical tongue,

then vesicle starts to flow like a liquid droplet

• Vesicle behaves as liquid droplet with interfacial tension equal to spontaneous tension σ

ESCRT-Induced Budding

Avalos Padilla et al, unpublished

• Sequential addition of three ESCRT proteins to GUVs:

• Interpretation: Domain-induced budding

Protein-rich Droplets

- Brangwynne ... Hyman, Science (2009)
- Membrane-less organelles that behave like liquid droplets
- Enriched in intrinsically disordered proteins (IDPs)
- Example for IDP: RNA-binding protein FUS
- Interaction of FUS-droplets with membranes, two subsequent wetting transitions:

dewetting for high salt

partial wetting for intermediate salt

complete wetting for low salt 17

- Membrane compartments, fluid architecture
- Molecular motors, free energy transduction

• Molecular assembly, ribosomes, protein synthesis

Biomolecular Machines

• Intro: Stepping motors

• Structural remodelling: Actin filaments

• Transport: Motor teams

• Information processing: Ribosomes 19

Multiscale Aspects of Mol Motors

• ATP hydrolysis ~ 1 nm

• Mechanical steps ~ 10 nm

 Cargo transport by motor teams ~ 100 μm •Traffic of many motors/cargos and phase transitions 20

Nanoscale: Mechano-Enzymes

- Motor action based on ATP hydrolysis
- Motor = ATPase with several catalytic domains
 M = # catalytic domains ≤ # ATP binding sites
- Examples:

Kinesin:M = 2Myosin V:M = 2Dynein: $M = 2 - 4 \le 8$

F1 ATPase: M = 3 < 6GroEl : M = 7 < 14

Mesoscale: Thermodynamics

• Motor molecule coupled to several reservoirs:

- Isothermal motor activity at fixed temperature T
- Chemical energy change $\Delta \mu = \mu(ATP) \mu(ADP) \mu(P)$
- Mechanical work $W_{me} = \ell F$ during spatial displacement ℓ

State Space of Motor

RL et al: J. Stat. Phys 135 (2009)

- Motor states *i* and *j*
- Transition lij> from *i* to *j* with rate ω_{ij}

- Energy change during lij> arising from chemical potential difference $\Delta \mu_{ij}$ and mechanical work W_{ij} :
 - $U_j U_i = \Delta \mu_{ij} Q_{ij} W_{ij}$ (first law of TD)
- Free energy change from constrained equilibrium:

$$H_{j} - H_{i} = \Delta \mu_{ij} - W_{ij} - k_{B} T \ln (\omega_{ij} / \omega_{ji})$$

• Entropy change from thermodynamic relation:

$$S_j - S_i = k_B \ln (\omega_{ij} / \omega_{ji}) - Q_{ij} / T = \Phi_{ij} - Q_{ij} / T$$
 23

Cyclic Balance Conditions

- Summation of transitions along a complete directed cycle C_v^{d} , all state functions cancel
- Released heat: $Q(C_v^d) = \Sigma Q_{ij} = \Delta \mu(C_v^d) W(C_v^d)$
- Produced entropy I: $T \Phi(C_v^d) = \Sigma T \Phi_{ij} = Q(C_v^d)$
- Produced entropy II: $T \Phi(C_v^d) = k_B T \ln(\Xi_v^d)$

with
$$\Xi_{v}^{d} = \prod_{ij>}^{v,d} (\omega_{ij} \neq \omega_{ji})$$

$$k_{B}T \ln(\Xi_{v}^{d}) = \mu(C_{v}^{d}) - W(C_{v}^{d}) = Q(C_{v}^{d})$$

Relation between kinetics and thermodynamics, must be fulfilled for thermodynamic consistency 24 • Balance condition for each directed cycle C_v^{d} :

$$k_{\rm B}T \ln(\Xi_{\rm v}^{\rm d}) = \mu(C_{\rm v}^{\rm d}) - W(C_{\rm v}^{\rm d})$$

Classification of cycles:

- Detailed balance: $\mu(C_v^d) = 0$ and $W(C_v^d) = 0$
- Mech nonequilibrium: $\mu(C_v^d) = 0$ and $W(C_v^d) \neq 0$
- Chem nonequilibium: $\mu(C_v^d) \neq 0$ and $W(C_v^d) = 0$
- Chemomech coupling: $\mu(C_v^d) \neq 0$ and $W(C_v^d) \neq 0$

Cargo Transport by Motor Teams

• Transport by N identical motors

Klumpp and RL, PNAS (2005)

- Transport by two antagonistic motor teams, Stochastic tug-of-war

M. Müller et al, PNAS (2008)

• Elastic linkers between motors and cargo

Berger et al, *PRL* (2012) Ucar, RL, *Soft Matter* (2017)

Concentration Gradients from Motors

M. Müller et al, J. Phys. CM 17 (2005)

• Half open tube:

left boundary open, reservoir of motors = 'cell body'
right boundary closed = 'Synapse'

• (+) Motors (kinesins) moving to the right

• (-) Motors (dyneins) moving to the left

Concentration gradient created by motors

- Membrane compartments, fluid architecture
- Molecular motors, free energy transduction

• Molecular assembly, ribosomes, protein synthesis

Protein Synthesis by Ribosomes

- Ribosomes are assemblies of rRNA and r-proteins
- Complex and hierarchical assembly process in vivo
- In vitro assembly from rRNA and r-proteins without additional components

- No assembler for ribosomes
- Protein synthesis requires many molecular players:

Ribosome + mRNA + tRNAs

TC = ternary complex = tRNA + EF-Tu + GTP

EF-Tu = most abundant protein

- Ribosome steps along codons of mRNA (purple -> green) consuming one ternary complex at each codon
- Elongation cycle during one step:

Decoding of codon by binding/accommodation of tRNA Elongation of growing peptide chain by one amino acid Translocation of mRNA together with two tRNAs

Single Elongation Cycle

• Complexity of decoding:

61 sense codons and 43 elongator tRNA species (E. coli)

Codon-tRNA Relationships

- red/purple = non-cognate released after initial binding
- yellow = near-cognate decoding => wrong amino acid
- green = cognate decoding => correct amino acid
 - ,Ocean' of non-cognates with some near-cognates and a few cognates

Single Elongation Cycle - Refined

Rudorf, Thommen, Rodnina, RL, PLoS Comp Biol (2014)

• Possible binding of cognate/near-cognate/non-cognate tRNAs:

• Competition between cognate, near-cognate, and non-cognate tRNAs

Markov Process

• Map cartoon of multistep process onto Markov chain:

• Individual transitions:

initial binding, recognition, initial selection, GTP hydrolysis, phosphate release, proof reading, full accommodation

- All transition rates ω_{ij} have been measured in vitro
- Some rates identical for both cognates and near-cognates ³⁴

From In-Vitro to In-Vivo Rates Rudorf, Thommen, Rodnina, RL, PLoS Comp Biol (2014) • Scale factors $\omega_{ii}^*/\omega_{ii}$ • Single barrier shifts $\Delta_{ij} = \ln(\omega_{ij}^*/\omega_{ij})$ 0.5 Single Barrier Shift A_{ij} [k_B T] Scale Factor $\omega^*_{ m ij}/\omega_{ m ij}$ -0.5 -1.0-1.53th 3th 3th 3th 3th 3th 3th 3th 3th 300

• Three in-vivo rates (purple) are significantly increased: rejection rate ω_{76} for near cognates dissociation rate ω_{off} after initial binding recognition rate ω_{rec} for cognates and near-cognates 35

Assembly of Protein Complexes

Shieh ... Kramer, Bukau, Science (2015)

- Co-translational assembly: *in vivo* synthesis of two proteins, assembly during translation, luxA binds to emerging luxB
- Protein synthesis on a chip: different DNA compartments for different proteins, control of spatial separation between different compartments

36

Karzbrun ... Bar-Ziv, Science (2014)

New Platform for Bottom-Up Assembly

Weiss ... Spatz, Nature Materials (Nov. 2017) #

- Collaboration within MaxSynBio
- Project leader: Joachim Spatz, Heidelberg
- Collaboration between 4 MPIs and 3 Universities
- Water-in-oil emulsion droplets
- Generated by microfluidics, stabilized by surfactant

List of coauthors:

MarianWeiss, Johannes Patrick Frohnmayer, Lucia Theresa Benk, Barbara Haller, Jan-Willi Janiesch, Thomas Heitkamp, Michael Börsch, Rafael B. Lira, Rumiana Dimova, Reinhard Lipowsky, Eberhard Bodenschatz, Jean-Christophe Baret, Tanja Vidakovic-Koch, Kai Sundmacher, Ilia Platzman and Joachim P. Spatz

GUVs within W/O Emulsion Droplets

- Emulsion w/o droplet stabilized by surfactant
- Pico-Injection of small vesicles
- Pico-Injection of Mg⁺⁺
- Adhesion of vesicles to surfactant layer
- Rupture of vesicles
- Fusion of fragments

- Image: Surger of the surger
- => Formation of a GUV supported by surfactant layer
- Release of encaged GUV from droplet

Release of GUVs from Droplets

Weiss ... Spatz, Nature Materials (Nov. 2017)

• General platform for subsequent bottom-up assembly

Sequential Bottom-Up Assembly

- Pico-injection of membrane and cytoskeletal proteins
- Incorporation of functional ATP Synthase

Perspectives and Challenges

- Further steps of sequential assembly: Compartments + ATP Synthase + motors + ...
- Importance of ionic conditions
- ,Broken hierarchy' of biolevels
- Wanted and unwanted interactions
- Evolution via selection (failures)
- Evolution as a learning process
- Natural cells after 10⁸ years ?
- Synthetic cells after xx years ?
- Can science replace evolution?

Summary

Lipid bilay

- Membrane compartments, multiresponsive, many architectures
- Molecular motors, cargo transport and concentr gradients
- Protein synthesis, comparison of in vivo and in vitro
- Droplet-stabilized GUVs, new platform for sequential assembly

• Membranes

Rumiana Dimova Tom Robinson Jaime Agudo-C. Tripta Bhatia Yunuen Avalos Padillo Jan Steinkühler • Motors + Ribosomes Stefan Klumpp Sophia Rudorf Mehmet Ucar Stefanie Foerste Nadin Haase Simon Christ Collaborations
Marina Rodnina
Joachim Spatz
Tony Hyman
Titus Franzmann
Günther Kramer
Roy Bar-Ziv