Endocytosis of Nanoparticles

Reinhard Lipowsky Theory & Bio-Systems, MPI-CI, Potsdam

- Motivation: Cellular Uptake of NPs
- Dissecting Endocytosis into Adhesion + Engulfment + Fission
- Quantitative Relationships
- Outlook: Engulfment regimes and patterns, Receptor-mediated endocytosis ...

Nanoparticles in Cells: Examples

• Theranostic NPs for siRNA delivery

Liu et al, PNAS (2016)

• Gender-dependent cellular uptake of NPs

Serpooshan et al, ACS Nano (2018)

Targeting Nanoparticles to Cells

• Nanoparticles (NPs) as drug delivery systems:

• Endocytic pathway also used by virusses, airborne ultrafine particles, ...

• Dissecting endocytosis into three basic steps: Onset of Adhesion, Complete Engulfment, Fission 4

- Attractive interactions between NP and membrane
- Van der Waals, electrostatic, receptor-ligand
- Gain of adhesion free energy but increase of elastic membrane energy
- Competition between adhesion and bending
- Bending rigidity \varkappa versus adhesive strength |W|

Bending Rigidity

- Bending energy proportional to bending rigidity \varkappa
- Bending rigidity is of the order of 10^{-19} J = 20 k_B T
- Some values measured for lipid bilayers:

lipid bilayer	adhesive material	$\frac{\kappa}{[10^{-19}\mathrm{J}]}$	W $[mJ/m^2]$	R_W [nm]
DMPC	silica	0.8	0.5 - 1	13 - 18
eggPC	glass	$\simeq 1$	0.15	26
DMPC	receptor-ligand	0.8	0.03	73
DOPC/DOPG	coated glass	0.4	3×10^{-4}	510
DOPC/DOPG	glass	0.4	10^{-5}	2800

Agudo-Canalejo and RL, ACS Nano (2015) ⁶

Adhesive Strength

- Adhesion free energy proportional to contact area
- Adhesive strength |W| = adhesion free energy per area
- Adhesive strength *W* reflects NP surface chemistry and membrane composition

lipid bilayer	adhesive material	κ [10 ⁻¹⁹ J]	W $[mJ/m^2]$	R_W [nm]
DMPC	silica	0.8	0.5 - 1	13 - 18
eggPC	glass	$\simeq 1$	0.15	26
DMPC	receptor-ligand	0.8	0.03	73
DOPC/DOPG	coated glass	0.4	3×10^{-4}	510
DOPC/DOPG	glass	0.4	10^{-5}	2800

• Adh strength IWI varies over orders of magnitude

7

Adhesion Length

• Competition between κ and |W|:

Adhesion length $R_W = (2\kappa/|W|)^{1/2}$

lipid bilayer	adhesive material	κ [10 ⁻¹⁹ J]	$\frac{ W }{[mJ/m^2]}$	R_W [nm]
DMPC	silica	0.8	0.5 - 1	13 - 18
eggPC	glass	$\simeq 1$	0.15	26
DMPC	receptor-ligand	0.8	0.03	73
DOPC/DOPG	coated glass	0.4	3×10^{-4}	510
DOPC/DOPG	glass	0.4	10^{-5}	2800

• Strong/weak adhesion = small/large adhesive length R_W ⁸

Onset of Adhesion: Key Parameters

- Three key parameters for onset of adhesion: Adhesion length R_W , Particle size R_{pa} , and Membrane curvature M at point of contact
- Membrane curvature *M* can be positive or negative:

9

Onset of Adhesion: Local Criterion

Agudo-Canalejo and RL, ACS Nano + Nano Letters (2015)

• Membrane starts to spread over particle if

$$M \le 1/R_{\rm W} - 1/R_{\rm pa} =: M_{\rm co}$$

contact curvature M_{co} is threshold value for M

10

• Example:
$$R_{\rm W} = R_{\rm pa}$$
 or $M_{\rm co} = 0$

• Large M_{co} for small R_{W} or large |W|

Endocytosis: Complete Engulfment Complete Adhesion Engulfment NP Nanoparticle Membrane Fission

Engulfment: Basic Aspects Membrane neck Partial Partial Complete

- After onset of adhesion, membrane spreads over NP
- Membrane may engulf NP only partially or completely
- Complete engulfment involves closed membrane neck
- Necessary condition for complete engulfment: Closed membrane neck must be stable

• Membrane curvature *M* can again be positive or negative:

Curvature *M* of unbound neck segment

Spontaneous (or preferred) curvature m

13

Spontaneous Curvature

• Spontaneous curvature *m* describes bilayer asymmetry:

Asymmetric composition, e.g., ganglioside Asymmetric adsorption of small molecules

Asymmetric protein coats, e.g. BAR-domain

- Membrane prefers to curve towards one side
- Large *m*-values lead to spontaneous tubulation
- Several methods to determine *m* from nanotubes
 Liu et al, *ACS Nano* (2016); Bhatia et al, *ACS Nano* (2018) ¹⁴

Neck Stability: Local Criterion

• Closed membrane neck is stable if membrane curvature

$$M \ge 2m + 1/R_{\rm pa} - 1/R_{\rm W} =: M_{\rm ne}$$

2nd threshold value for *M*

• Example: $M_{ne} = 2m + 1/R_{pa} - 1/R_W = 0$

closed neck is unstable and opens up 15

- Two local conditions for onset of adhesion and stability of closed neck
- Combination of both local conditions:

$$2m + 1/R_{\rm pa} - 1/R_{\rm W} \le M \le 1/R_{\rm W} - 1/R_{\rm pa}$$

• Technical point: Limit of small particle size R_{pa} Agudo-Canalejo and RL, *Soft Matter* (2017)

16

Role of Spontaneous Curvature

- Contact curvature $M_{\rm co} = 1/R_W 1/R_{\rm pa}$
- Combined conditions:

$$2m - M_{\rm co} \le M \le M_{\rm co}$$

- Symmetric membrane with m = 0: complete engulfment for $M_{co} > 0$ or $R_{pa} > R_W$
- Positive spont curv m > 0 suppresses endocytosis
- Negative spont curv m < 0 enhances endocytosis

Endocytosis versus Exocytosis

• Endocytic engulfment:

• Exocytic engulfment:

- Particles from exterior
- Negative curvature *M* of bound membrane segment
- Favored by m < 0

- Particles from interior
- Positive curvature *M* of bound membrane segment
- Favored by m > 0

Spont Curvature from Experiments

Significant spont curvature *m* leads to membrane nanotubes with width $\sim 1/m$

> • Ternary lipid membranes (DOPC, DPPC, Chol) and PEG-dextran solutions,

> > $m \approx -1/(125 \text{ nm})$

Liu et al, ACS Nano (2016)

Bhatia et al, ACS Nano (2018)

• POPC membranes doped with ganglioside GM1 $m \approx - 1/(95 \text{ nm})$

Spont Curv from MD Simulations

Rozycki and RL, J. Chem. Phys. (2015); J. Chem. Phys. (2016)

• Example: Adsorption and depletion layers:

Particle concentration X_{ex}

Bilayer 1

Particle concentration X_{in}

Bilayer 2

Particle concentration X_{ex}

- Spont curv proportional to $\pm (X_{ex} X_{in}) = \pm \Delta X$
- Example: 1 nm particles, $\Delta X = 100 \text{ mM}$ Adsorption: $m = \pm 1/(77 \text{ nm})$, Depletion: $m = \pm 1/(270 \text{ nm})$

Fission: Basic Aspects

- Closure and cleavage of membrane neck
- Both steps are facilitated by constriction forces
- Biologists emphasize forces generated by proteins
- But both adhesion and spontaneous curvature generate effective constriction forces

Stability of Membrane Necks II

Agudo-Canalejo and RL, Soft Matter (2016)

- Include constriction force f
- Generalized stability relation:

 $M \ge 2m + 1/R_{\rm pa} - 1/R_{\rm W} - f (4\pi\kappa)^{-1}$

- Additional f-term stabilizes closed neck
- Three mechanisms for neck stabilization:
 - large, negative spontaneous curvature m
 - large adhesive strength |W|
 - large constriction force f

Linear superposition !

Effective Constriction Forces

• General stability relation for m < 0:

 $M + f (4\pi\kappa)^{-1} - 2m + 1/R_W - 1/R_{\text{pa}} \ge 0$

• Effective constriction force

$$f_{\rm eff} = f + 8 \pi \kappa |m| + 4 \pi \kappa R_W$$

- Spont curvature generates force $f_m = 8 \pi \kappa |m|$
- Adhesion generates force $f_W = 4 \pi \kappa / R_W$
- Example: m = -1/(100 nm) and $R_W = 20 \text{ nm}$ generate effective forces $f_m = 25 \text{ pN}$ and $f_W = 63 \text{ pN}$

Summary: Local Relations

- Onset of adhesion: $M \le 1/R_{\rm W} 1/R_{\rm pa} = M_{\rm co}$
- Alternative interpretation: Instability of free NP state
- Stability of closed membrane neck: $M \ge 2m M_{co}$
- Combined relations: $2m M_{co} \le M \le M_{co}$
- Defines regime C_{st} of complete engulfment with unstable free state and stable membrane necks
- Effective constriction force:

$$f_{\rm eff} = f + 8 \pi \kappa |m| + 4 \pi \kappa / R_W$$

Consequences of Local Relations

- Critical particle sizes for engulfment
 Combination of two stability relations for *F* and *C* states leads to four
 - stability regimes F_{st} , B_{st} , C_{st} and P_{st}

• Engulfment patterns from many particles

Nonspherical shapes have variable segment curvature Different engulfment states coexist on the same vesicle

Curvature-Induced Forces

Agudo-Canalejo and RL, Soft Matter (2017)

• Vesicle shape with variable membrane curvature M

- Curvature gradients
- NPs follow gradients
- Endocytosis: NPs move to minima of curvature
- Exocytosis: NPs move to maxima of curvature

Receptor-Mediated Endocytosis

Chithrani et al, Nano Letters (2007)

- Uptake of gold nanoparticles by cells
- Particles bind to transferrin receptors
- Assembly of clathrin-coated vesicles Non-monotonic size-dependence !
 - Cell membrane with two types of segments, bound and unbound
 - Bound segment contains protein coat with spont curv $m_{bo} = -1/(40 \text{ nm})$
 - Good agreement with exp data: Agudo-Canalejo, RL: ACS Nano (2015)

Shape Functional with Adhesion

• Shape functional: $E = E_{cu} + \Sigma A - \Delta P V - W A_{bo}$

Adhesive strength W > 0Area A_{bo} of bound membrane segment

- Competition between adhesion and bending encoded in adhesion length $R_{\rm W} = (2\kappa/W)^{1/2}$
- Contact mean curvature M_{co} for membrane adhesion to planar surface:

$$M_{\rm co} = 1/R_{\rm W} = (W/2\kappa)^{1/2}$$

<u>راج</u>

 $|R_{\rm pa}|$

 $A_{\rm bo}$

Contact Mean Curvature at Particle

- Membrane adhering to particle
- Bound membrane segments (red) follows particle surface
- Contact line provides boundary condition for unbound segment (blue)
- Principical curvatures along contact line:

• Contact mean curvature:

$$M_{\rm co} = 1/R_{\rm W} - 1/R_{\rm pa}$$

• Independent of spontaneous curvature *m* !

(In)Stabilities from Energy Landscapes

• Wrapping angle ϕ can vary from $\phi = 0$ to $\phi = \pi$

i.e., from state **F** to state **C**

33

• Symmetric membrane with m = 0:

•Large range of *M*-values for large and negative spont $cury_4m$

Clathrin-Dependent Endocytosis

• Assembly of clathrin-coated pit, budding, fission

- In-bud implies negative spontaneous curvature
- Assembly of thick protein coat: AP2 ++

Local Curvature Generation

RL, Europhys. Lett. (1995) RL, Doebereiner, Europhys. Lett. (1998)

• Different molecular mechanisms:

Science (2004)

