Multiresponsive Behavior of Membranes and Vesicles

Reinhard Lipowsky MPI of Colloids and Interfaces, Potsdam-Golm

- Intro: Fluid Membranes and GUVs
- GUVs and Aqueous Two-Phase Systems
- Spontaneous Tubulation and Tension
- Morphological Complexity
- Wetting and Fluid-Elastic Scaffolding
- GUVs and Biomolecular Condensates
- Endocytosis of Nanodroplets
- Endocytosis of Nanoparticles
- Outlook: Droplet-Stabilized GUVs

Biomembranes are Fluid Bilayers

- Fluid membranes, i.e., fast lateral diffusion:
 Diffusion constant ~ μm²/s
- Lateral diffusion => Compositional responses, demixing, domain formation ...
- Flexibility => Morphological responses, budding, tubulation, ...
 Direct evidence for fluidity

lipid swapping ~ ns

40 µm

Multiresponsive Behavior of GUVs

- Giant unilamellar vesicles (GUVs), tens of micrometers
- Remodelling in response to various perturbations:

Nanotubes from polymer adsorption, tube width ~ 100 nm Formation of intramembrane domains, 2D phase separation

Small buds from adsorption of two ESCRT proteins

Shaping GUVs by biomolecular condensates

• What are the forces that drive remodelling processes?

Spontaneous = Preferred Curvature

- Spontaneous or preferred curvature *m* describes bilayer asymmetry = asymmetry between two leaflets
- Different molecular mechanisms for bilayer asymmetry:

Asymmetric composition, e.g., ganglioside

Asymmetric adsorption of small molecules Asymmetric protein coats, e.g. BAR-domain

Curvature Elasticity

Helfrich, Z. Naturforschung (1973)

- Local mean curvature *M* tries to adapt to spontaneous (or preferred) curvature *m*
- Curvature or bending energy:

$$E_{cu} = \int dA \ 2 \ \kappa (M - m)^2$$

integral over membrane area A

- 2nd fluid-elastic parameter: Bending rigidity κ Dimensions of energy, $\kappa = 10^{-19} \text{ J} = 20 \text{ k}_{\text{B}} \text{ T}$
- Range of spontaneous curvatures *m* from 1/(20 nm) to 1/(20 μm)

Sign of (Spontaneous) Curvature

- Mean curvature *M* and spontaneous curvature *m* can be positive or negative
- Sign defined with respect to interior/exterior compartments = with respect to inner/outer leaflet

exterior compartment outer leaflet

interior compartment inner leaflet

Mean curvature *M* is positive (negative) if membrane bulges towards exterior (interior) compartment

Local Curvature Generation

RL, Faraday Disc. (2013); Biol. Chem. (2014)

• Local curvature generated on nanoscopic scales:

Spont Curv from Mol Simulations

Rozycki, RL, J. Chem. Phys. (2015); J. Chem. Phys. (2016)

- Stress profiles and tension-free states
- Spont curv from first moment of stress profiles
- Example: Different leaflet densities

Asymmetry $\phi = N_{\rm ex}/(N_{\rm ex}+N_{\rm in})$

Asymmetric Adsorption and Depletion

Particle concentration X_{ex}

Bilayer 1

Particle concentration X_{in}

Bilayer 2

Particle concentration X_{ex}

• Spont curv proportional to $\pm (X_{ex} - X_{in}) = \pm \Delta X$

• Example: 1 nm particles, $\Delta X = 100 \text{ mM}$

Adsorption: m = 1/(77 nm), Depletion: m = -1/(270 nm)

GUVs + Aqueous Phase Separation

Li, RL, Dimova, *JACS* (2008); *PNAS* (2011) Liu, Agudo. ... RL, *ACS Nano* (2015)

- GUVs filled with aqueous polymer solution
- Example: PEG and dextran
- Increase polymer concentration via deflation:

1st Surprise: Wetting Transition

Li et al, JACS (2008)

• Shape evolution for vesicle during deflation:

- Low deflation: zero contact angle => complete wetting
- High deflation: finite contact angle => partial wetting 12

2nd Surprise: Membrane Nanotubes

Li et al, PNAS (2011) Liu et al, ACS Nano (2016)

- Membranes labeled by fluorescent dyes
- Lipid mixture of DOPC, DPPC, cholesterol
- Liquid-disordered (red) and liquid-ordered phase (green)

- Spontaneous tube formation without external forces
- Inward-pointing tubes reveal large negative spont curv
- Tubes can be necklace-like or cylindrical

Tubulation and Wetting

Liu, Agudo ... RL, ACS Nano (2015)

• Nanotubes form for different wetting morphologies:

• Tubulation does not require aqueous phase separation

- Intro: Fluid Membranes and GUVs
- GUVs and Aqueous Two-Phase Systems
- Spontaneous Tubulation and Tension
- Morphological Complexity
- Wetting and Fluid-Elastic Scaffolding
- GUVs and Biomolecular Condensates
- Endocytosis of Nanodroplets
- Endocytosis of Nanoparticles
- Outlook: Droplet-Stabilized GUVs

Spont Tubulation and Tension

RL, Faraday Discuss. (2013)

- Tubulation leads to tense mother vesicle
- Total tension in Euler-Lagrange equation has two components:

 $\hat{\Sigma} = \Sigma + \sigma$

Mechanical tension Σ stretches the membrane Spontaneous tension $\sigma = 2 \kappa m^2$ for $M \ll m$

- Presence of nanotubes implies dominance of spontaneous tension, mechanical tension can be ignored
- Example: Spont curvature $\approx -1/(100 \text{ nm})$

Spontaneous tension $\sigma \approx 10^{-2}$ mN/m Mechanical tension $\Sigma \approx 10^{-4}$ mN/m

How Do Nanotubes Form?

Liu et al, ACS Nano (2016)

- Tubulation intimately related to budding
- Osmotic deflation of spherical GUV
- Small deflation step leads to single bud

- Bud and mother vesicle connected by membrane neck
- Bud acts as nucleation site for necklace-like tube
- Several pathways for subsequent deflation steps:
 - Formation of new bud
 - Bud into 2-necklace
 - N-necklace into (N+1)-necklace

Membrane Buds and Necks

• In-bud:

B

- For $m \neq 0$, curvature elasticity leads to spherical membrane segments connected by membrane necks
- Out-bud:

spont curv $m > \sqrt{2/R_{ve}}$

• Closed neck is stable if:

 $0 < M^A + M^B \le 2 m$

 $2m \leq M^A + M^B < 0$

spont curv m < 0

• Simple relation between geometry and material parameter

Seifert et al, PRA (1991)

Nucleation and Growth of Tubes

Liu et al, ACS Nano (2016)

RL, J. Phys. D (in press)

- Spherical GUV, large spont curv *m*
- Osmotic deflation of GUV in discrete steps
- At each step, different morphological pathways:

Morphological Complexity: Theory

• After 6th step, 11 morphologies with 6 spherules:

- All beads are connected by membrane necks
- All morphologies have the same area, volume, and curvature energy
- Rugged energy landscape contains 11 intersecting branches
- For large N, number of N-spherule morph grows as $exp[c\sqrt{N}]$

Morph Complexity: Experiment

• Out-Necklaces

• In-Necklaces

Tripta Bhatia (unpublished)

Branched

Linear

Branched

Long Necklaces

• Example: Out-Necklace with 14 beads

- Initial deflation leads to one bud
- Bud grows into long necklace

Nanotubes Increase Robustness of GUVs

• Retraction of tubes by micropipettes: Bhatia et al, ACS Nano (2018)

Initial aspiration up to hemispherical tongue then vesicle starts to flow into micropipette, increased robustness !

Initial aspiration: Aspiration pressure versus geometric quantity Δ_R Slope = spontaneous tension σ

- Tubulated GUV behaves like a liquid droplet
- Interfacial tension = spontaneous tension

- Intro: Membranes and Giant Vesicles (GUVs)
- GUVs and Aqueous Two-Phase Systems
- Spontaneous Tubulation and Tension
- Morphological Complexity
- Wetting and Fluid-Elastic Scaffolding
- GUVs and Biomolecular Condensates
- Endocytosis of Nanodroplets
- Endocytosis of Nanoparticles
- Outlook: Droplet-Stabilized GUVs

Membranes and Droplets

RL, J. Chem. Phys. B (2018)

- In-wetting: Droplets at inner leaflet
- Out-wetting: Droplets at outer leaflet
- Droplet view: Wetting morphologies
- Membrane view: Fluid-elastic scaffolding
- Ex 1: Partial wetting, contact angles
- Ex 1: Capillary forces and deformations
- Ex 2: Complete wetting by γ phase
- Ex 2: Endocytosis of β droplet

Phase Diagram for PEG + Dextran

Liu et al, Langmuir (2012)

• Phase diagram of α = PEG and β = dextran:

- For all lipid compositions, same ordering of complete and partial wetting subregions
- Partial-to-complete wetting transition at boundary tie line

In-Wetting Morphologies

- Three aqueous phases α , β , γ
- Phase coexistence of α and β , γ is ext spectator phase
- GUV membrane encloses α and $~\beta$

Partial wetting by α and β

Complete wetting by α

Complete wetting by β

Complete wetting by γ, Membrane neck

Out-Wetting Morphologies

- Three aqueous phases α , β , γ
- Phase coexistence of α and β in exterior solution
- GUV membrane encloses spectator phase γ

Partial wetting by α and β

Complete wetting by γ, Membrane neck Complete wetting by β

Complete wetting by α, Dewetting

Nanoscopic Scales

RL, J. Chem. Phys. B (2018)

- Shapes with smooth bends and no kinks
- Axisymmetric shapes, energy minimization:

common tangent at contact line, two intrinsic contact angles θ_{α}^{*} and θ_{β}^{*} with $\theta_{\alpha}^{*} + \theta_{\beta}^{*} = \pi$

- Complex matching conditions along contact line
- Simplification if $\alpha\gamma$ and $\beta\gamma$ segments have identical curvature elastic properties

Kusumaatmaja et al, Phys. Rev. Lett. (2009)

Mesoscopic Scales

RL, J. Chem. Phys. B (2018)

- Experimental shapes consist of three spherical caps
- Apparent contact angles θ_{α} , θ_{β} , and θ_{γ} with $\theta_{\alpha} + \theta_{\beta} + \theta_{\gamma} = 2\pi$
- Geometry of three spherical caps, common contact line

• Shape determined by four radii $R_{\alpha\gamma}$, $R_{\beta\gamma}$, $R_{\alpha\beta}$, and R_{co} and by positions of three sphere centers $C_{\alpha\gamma}$, $C_{\beta\gamma}$, and $C_{\alpha\beta}$

Effective Membrane Tensions

- Shape equations for mean curvatures $M = \pm 1/R$
- Balance between pressures and tensions:

 $P_{\alpha} - P_{\beta} = 2\Sigma_{\alpha\beta} M_{\alpha\beta} \qquad P_{j} - P_{\gamma} = 2\Sigma_{j\gamma}^{\text{eff}} M_{j\gamma}$

• Effective membrane tension:

$$\Sigma_{j\gamma}^{\text{eff}} \equiv \Sigma + W_{j\gamma} + \sigma_{j\gamma} - 2\kappa_{j\gamma}m_{j\gamma}M_{j\gamma}$$

- Overall lateral stress Σ from tensile forces
- Adhesive strength W from attractive molecular forces
- Spontaneous tension σ from bilayer asymmetry
- Curvature dependent term

Tensions and Angles

RL, J. Chem. Phys. B (2018)

- Combine three shape equations with geometric relation
- Eliminate mean curvature $M_{\alpha\beta}$
- Relation between effective tensions and contact angles:

$$M_{\alpha\gamma}\left(\frac{\Sigma_{\alpha\gamma}^{\text{eff}}}{\Sigma_{\alpha\beta}} - \frac{\sin\theta_{\beta}}{\sin\theta_{\gamma}}\right) = M_{\beta\gamma}\left(\frac{\Sigma_{\beta\gamma}^{\text{eff}}}{\Sigma_{\alpha\beta}} - \frac{\sin\theta_{\alpha}}{\sin\theta_{\gamma}}\right)$$

- Relation depends on mean curvatures $M_{\alpha\gamma}$ and $M_{\beta\gamma}$
- Contact angles can be measured directly
- Complex parameter dependence via effective tensions

Droplets without Membrane

• Three coexisting aqueous phases α , β , γ

• Similar relation:

$$M_{\alpha\gamma}\left(\frac{\Sigma_{\alpha\gamma}}{\Sigma_{\alpha\beta}} - \frac{\sin\theta_{\beta}}{\sin\theta_{\gamma}}\right) = M_{\beta\gamma}\left(\frac{\Sigma_{\beta\gamma}}{\Sigma_{\alpha\beta}} - \frac{\sin\theta_{\alpha}}{\sin\theta_{\gamma}}\right)$$

- But interfacial tensions Σ_{ij} are material parameters
- Expressions in two parentheses vanish separately

Special Parameter Regimes

- Each segment has small or large spont curvatur
- Balance of tensions at apparent contact line:

Total segment tensions

$$\widehat{\Sigma}_{j\gamma} = \Sigma_{j\gamma} + \sigma_{j\gamma}$$

Sum of mechanical and spontaneous tensions

 $\sin \theta_{\alpha}$

 $\sin \theta_{\gamma}$

• Balance relations:

Scaffolding Mechanisms

Scaffolding mechanisms and parameters:

- Tensile forces generate overall lateral stress Σ
- Adhesive strength W< 0 creates contact area
- Interfacial tension $\Sigma_{\alpha\beta}$ generates capillary forces
- Endocytosis: larger contact area + smaller interfacial area

Vahid Satarifard (unpublished)

• Droplet generates bilayer asymmetry and spont curv

Droplet-Induced Curvature

Liu, Agudo ... RL, ACS Nano (2015)

• Tubulation of membrane segment in contact with PEG-rich phase:

Biomolecular Condensates

Brangwynne ... Hyman, Science (2009)

- Biomolecular condensates that behave like liquid droplets
- Enriched in intrinsically disordered proteins (IDPs)
- Example for IDP: RNA-binding protein FUS
- Interaction of FUS-droplets with GUVs, two subsequent wetting transitions:

dewetting for high salt

partial wetting for intermediate salt

complete wetting for low salt

Two Wetting Transitions

• GUV + FUS-rich organelle + salt

dewetting for high salt partial wetting for intermediate salt

complete wetting for low salt

Endocytosis of Condensates

• Green FUS-rich condensates engulfed by red GUV:

Lipid Bilayer + Nanodroplet

Satarifard, Grafmüller, RL (unpublished)

- Molecular simulations of lipid bilayer + nanodroplet
- Lateral box size L_{\parallel} determines mechanical tension
- Mechanical tension ~ size L_{\parallel} as control parameter

three aqueous phases α , β , γ α droplet (blue) coexists with β phase (white) three surface segments

αβ, αγ, βγ

Engulfment from Different Angles

- Reduction of size L_{\parallel} from 130 d to 120 d
- Axisymmetry broken for L_{\parallel} around 124 d
- Caused by negative line tension of contact line

- Intro: Membranes and Giant Vesicles (GUVs)
- GUVs and Aqueous Two-Phase Systems
- Spont Tubulation and Tension
- Morphological Complexity
- Wetting and Fluid-Elastic Scaffolding
- GUVs and Biomolecular Condensates
- Endocytosis of Nanodroplets
- Endocytosis of Nanoparticles
- Outlook: Droplet-Stabilized GUVs

• Dissecting endocytosis into three basic steps: Onset of Adhesion, Complete Engulfment, Fission

- Attractive interactions between NP and membrane
- Van der Waals, electrostatic, receptor-ligand
- Gain of adhesion free energy but increase of elastic membrane energy
- Competition between adhesion and bending
- Bending rigidity κ versus adhesive strength *|W|*

Adhesion Length

- Adhesive strength |W| = adhesion free energy per area
- Bending rigidity κ and adhesive strength |W| define adhesion length $R_W = (2\kappa/|W|)^{1/2}$
- For specific NP-membane systems, R_W varies between 10 nm and 3 μ m !
- Large R_W values can be measured via membrane curvature along contact line

Onset of Adhesion: Key Parameters

- Three key parameters for onset of adhesion: Adhesion length R_W , Particle size R_{pa} , and Membrane curvature M at point of contact
- Membrane curvature *M* can be positive or negative:

Onset of Adhesion: Local Criterion

Agudo-Canalejo and RL, ACS Nano + Nano Letters (2015)

• Membrane starts to spread over particle if

$$M \le 1/R_{\rm W} - 1/R_{\rm pa} =: M_{\rm co}$$

contact curvature M_{co} is threshold value for M

• Example: $R_{\rm W} = R_{\rm pa}$ or $M_{\rm co} = 0$

• Large contact curvature M_{co} for small R_W or large |W|

- After onset of adhesion, membrane spreads over NP
- Membrane may engulf NP only partially or completely
- Complete engulfment involves closed membrane neck
- Necessary condition for complete engulfment: Closed membrane neck must be stable

Neck Stability: Local Criterion

Agudo-Canalejo and RL, ACS Nano + Nano Letters (2015)

• Closed membrane neck is stable if membrane curvature

$$M \ge 2m + 1/R_{\rm pa} - 1/R_{\rm W} =: M_{\rm ne}$$

2nd threshold value for *M*

Effective Constriction Force

$$M + M_{\rm co} - 2m + f (4\pi\kappa)^{-1} \ge 0$$

$$f_{\rm eff} = f + 4 \pi \kappa \left(M + M_{\rm co} - 2m\right) \ge 0$$

=> Engulfment force $f_{eng} = 100 \text{ pN}$

• Sufficient to create two hydrophobic bilayer edges

Receptor-Mediated Endocytosis

Chithrani et al, Nano Letters (2007)

- Uptake of gold nanoparticles by cells
- Particles bind to transferrin receptors
- Assembly of clathrin-coated vesicles Non-monotonic size-dependence !
 - Cell membrane with two types of segments, bound and unbound
 - Bound segment contains protein coat with spont curv $m_{bo} = -1/(40 \text{ nm})$
 - Good agreement with exp data: Agudo-Canalejo, RL: ACS Nano (2015)

Outlook: Droplet-Stabilized GUVs

Weiss et al, Nature Materials (2018)

• Four MPIs within MaxSynBio, leading PI: J. Spatz

- Water-in-Oil emulsion droplets
- Formation of GUV supported by the droplet surface
- Additional components by pico-injection
- Example: ATP synthase

GUVs within W/O Emulsion Droplets

- Emulsion w/o droplet stabilized by surfactant
- Pico-Injection of small vesicles
- Pico-Injection of Mg⁺⁺
- Adhesion of vesicles to surfactant layer
- Rupture of vesicles
- Fusion of fragments
 - => Formation of a GUV supported by surfactant layer
- Release of encaged GUV from droplet

Sequential Pico-Injections

- Pico-injection of membrane and cytoskeletal proteins
- Incorporation of functional ATP Synthase (FoF1-complex)

Coworkers

• Collaborations:

Joachim Spatz, Tony Hyman, Titus Franzmann

Rumiana Dimova

Vahid Satarifard

Andrea Grafmüller

Jaime Agudo-C.