Cooperative Transport of Cargo by Molecular Motors

Reinhard Lipowsky

MPI of Colloids and Interfaces, Potsdam

- Multiscale Motility
- Single motor properties
- Cooperative Cargo Transport
- Tug-of-war with elastic coupling
- Outlook: Motor Traffic

Biomolecular Machines

- Stepping motors

- Actin filaments

- Motor teams

- Ribosomes

Mechano-Enzymes

- Biomolecular machines:
1.7 nm

Conversion of chemical energy into mechanical work

- Universal chemical energy source provided by NTP = ATP, GTP, ...

- Hydrolysis of NTP: NTP -> NDP + P
- Synthesis of NTP: NTP <- NDP + P

Nucleotides
NTP, NDP, P
"Human body hydrolyses and synthesizes 60 kg of ATP per day!"

Chemical (Non)Equilibrium

- Molecular motors work at constant temperature
- Non-equilibrium processes driven by chemical unbalance
- ATP Hydrolysis: ATP <=> ADP + P

Reaction free enthalpy per hydrolysed ATP :

- Equilibrium constant K_{eq}

$$
\begin{aligned}
\Delta \mu & =\mu(\mathrm{ATP})-\mu(\mathrm{ADP})-\mu(\mathrm{P}) \\
& =\mathrm{k}_{\mathrm{B}} \mathrm{~T} \ln \left(\mathrm{~K}_{\mathrm{eq}} \frac{[\mathrm{ATP}]}{[\mathrm{ADP}][\mathrm{P}]}\right)
\end{aligned}
$$

- Chemical equilibrium $\Delta \mu=0$
- ATP hydrolysis for $\Delta \mu>0$
- ATP synthesis for $\Delta \mu<0$

Stepping Motors

- Filament $=$ Microtubule

Dyneins
to minus end

Kinesins
to plus end

- Filament $=$ F-Actin

$$
\begin{array}{ll}
\text { Myosin VI } & \text { Myosin V } \\
\text { to minus end } & \text { to plus end }
\end{array}
$$

- Each motor has two motor domains $=$ motor heads
- Each head acts as an ATPase, i.e., as an enzyme that catalyzes the hydrolysis of ATP
- Each motor makes steps with nanometer step size

Multiscale Motility of Motors

- Example: Kinesin at Microtubules

ATP Binding

+ hydrolysis

Nucleotide Binding Pocket ~ 1 nm

$$
10^{-3} \mathrm{~s}
$$

Mechanical step

Single head moves by 16 nm

$$
10^{-6} \mathrm{~s}
$$

Transport

Cargo transport over cm or m !

$$
10^{4}-10^{6} \mathrm{~s}
$$

Hierarchy of Time Scales \neq Hierarchy of Length Scales

Single Motor Head of Kinesin

Krukau, Knecht, RL, PCCP (2014)
Important subdomains:

- Nucleotide binding: L9 + $\alpha 3$
- Microtubule binding: L11 + $\alpha 4$
- Neck linker: NL + $\alpha 6$ helix

Allosteric coupling between subdomains:

- Conform changes of loops L9 and L11
- Rotation of helices $\alpha 3$ and $\alpha 4$

Different allosteric coupling in the absence and presence of tubulin

Stochastic Modelling: Single Head as 1-Site ATPase

Liepelt, RL, EPL 77 (2007); Phys. Rev. Lett. 98 (2007)

- Single head = single ATPase has 3 states:

$$
\begin{aligned}
& \text { empty: } \mathrm{i}=\mathrm{E} \\
& \text { bound ATP: } \mathrm{i}=\mathrm{T} \\
& \text { bound ADP: } \mathrm{i}=\mathrm{D}
\end{aligned}
$$

- In each state, head can attain many atomistic conformations:

Each state $\mathrm{i}=$ ensemble of substates $\left(\mathrm{i}, \mathrm{k}_{\mathrm{i}}\right)$

Kinesin as 2-Site ATPase

- Kinesin has two motor heads
- Each head can attain 3 states E, T, D that form one chemical cycle

- Two heads can attain $3 \times 3=9$ states with $2 \times 18=36$ transitions

- States + transitions define chemical network with many cycles

Mechanical Transitions

- Mechanical transitions $=$ Spatial displacement along filament
- Discrete step size l defines lattice of motor positions:

RL et al , J. Stat. Phys. 135 (2009)

- Mechanical transitions from chemical state at site x_{n} to chemical state at site $\mathrm{x}_{\mathrm{n}+1}$

Kinesin: Several Motor Cycles

$$
\text { Liepelt, RL, Phys. Rev. Lett. } 98 \text { (2007) }
$$

Three chemomechanical motor cycles

Dominant cycle depends on
Concentr of ATP, ADP, P and load force

- Small ADP and P, small load force: dicycle I25612>
- Small ADP and P, large load force: dicycle I52345>
- Large ADP, small load force: dicycle I25712>
- Graph theory: three fundamental cycles => three independent conditions on ω-products $\Xi_{v}{ }^{\text {d }}$

Single Motor Forces

- Motors attached to beads, force F applied to beads via laser traps
- Bead assay:

- Gliding assay:

- Both mechanical and chemical transition rates depend on single motor force $F: \omega_{i j}=\omega_{i j}(F)$
- Convention about sign of F : Resisting forces are positive, assisting forces are negative

Stall Force

- Motor velocity v decreases with increasing force F
- Velocity vanishes at stall force $F_{\text {s }}$

- Single motor can generate force up to stall force $F_{\text {s }}$

Detachment Force

- Thermal noise leads to unbinding of single motor from filament
- Unbinding rate ε is F-dependent:

$$
\varepsilon=\varepsilon_{0} \exp \left(|F| / F_{\mathrm{d}}\right)
$$

Detachment force F_{d}

- Single motor can sustain force up to detachment force F_{d}
- Multiscale Motility
- Single motor properties
!sㅋg • Cooperative cargo transport
- Tug-of-war with elastic coupling
- Outlook: Motor traffic

Intracellular Cargo Transport

- Example: Neuron, Axon, and Synapse

Cargo transport by several motors:

- Uni-directional transport by single motor species
- Bi-directional transport by two motor species

Cargo Transport by Motor Teams

- Transport by $\mathrm{N} \geq 2$ identical motors

Klumpp, RL, PNAS (2005)

- Transport by two antagonistic motor teams, Stochastic tug-of-war Müller, Klumpp, RL, PNAS (2008) MKL model

- Number of actively pulling motors varies with time: stochastic motor unbinding and rebinding
- Force balance between different motor-cargo forces

Basic Terminology

- Cargo attached to N_{-}minus and N_{+}plus motors: $\left[N_{-}+N_{+}\right]$system
- Examples:
[4+0] system
[2+2] system

- Define activity states by \# of actively pulling
motors $=$ motors attached to filament
- Activity state $\left(n_{-}, n_{+}\right)$corresponds to $n_{-} \leq N_{-}$actively pulling minus motors and

$(0,3)$ $n_{+} \leq N_{+}$actively pulling plus motors

Activity States - Examples

- Motors identical but distinguishable
- Distinguish identical motors by some label
- Activity state $\left(n_{-}, n_{+}\right)$corresponds to a certain subset of motors
- Two identical motors: [2+0] or [0+2] Activity states of $[2+0]$-system:

$$
(0,0)(1,0)_{1}(1,0)_{2}(2,0)
$$

- Two identical motors plus one antagonistic motor: $[2+1]$ or $[1+2]$
- Activity states of $[2+1]$ system
$(0,0) \quad(1,0)_{1}(1,0)_{2}(0,1)$
$(1,1)_{1}(1,1)_{2}(2,0)(2,1)$

Ucar, RL, Scientific Rep. (2019)

Motor Dynamics - Original Models

- State space $=$ network of activity states
- Motor dynamics via Markov process on state space
- Simplification: Coarse grain over discrete motor steps
- Assume equal force sharing between identical motors
- Impose force balance (Newton's 3rd law)
- Controversial: Effects of force fluctuations?
- Simplification: Ignore elastic motor-cargo linkers
- Controversial: Unequal force sharing from elastic forces?
=> Improve theory by including both discrete motor steps and elastic motor-cargo coupling

Discrete Steps + Elastic Coupling

- Two identical motors:

Berger et al, Phys. Rev. Lett. (2012) Keller et al, J. Stat. Phys. (2013)

- 1 dynein +1 kinesin Ucar, RL, Soft Matter (2017)

- 2 dyneins +1 kinesin

Ucar, RL, Scientific Rep. (2019)

Two Identical Motors

Berger, Klumpp, RL, Phys. Rev. Lett. (2012)

- Two identical motors attached to common cargo
- Both motors step stochastically (forward steps to the right)

relaxed springs, mutual force $\mathrm{F}=0$

step by leading motor, built-up of force F

several steps by
leading motor
- Effective spring with spring constant K

Extension $\Delta \mathrm{L}$ leads to mutual elastic force $\mathrm{F}=\mathrm{K} \Delta \mathrm{L}$

- New force scale: Elastic force $\mathrm{F}_{\mathrm{K}}=\mathrm{K} \cdot$ step size

Different Transport Regimes

- Reduced state space with coordinate ΔL only
- Single step leads to elastic force F_{K}
- Slow build-up of elastic strain:

Spontaneous unbinding of one motor

- Fast build-up of elastic strain:

Force-induced unbinding or
Force-induced stalling of one motor

Elastic Motor-Cargo Forces

- Focus on certain activity state with $n_{-}+n_{+} \geq 2$
- Subset of actively pulling motors labeled by j
- All active motors are elastically coupled to cargo
- Motor j exerts motor-cargo force $F_{j, c a}$ onto cargo
- Force balance (Newton's 3rd law): $\sum_{\mathrm{j}} F_{j, c a}=0$
- Single motor forces: $\quad F_{j}=-F_{j, c a} \quad$ for minus motors

$$
F_{j}=+F_{j, c a} \quad \text { for plus motors }
$$

- Force balance: $\sum_{\text {minus }} F_{j}=\sum_{\text {plus }} F_{j}$

Elastic Substates

- Focus on certain activity state with $n_{-}+n_{+} \geq 2$
- Mechanical forward or backward step of any motor:

Motor-cargo forces change =>
Single motor forces change =>
Force-dependent transition rates change

- Starting from relaxed elastic couplings, each mechanical step leads to new elastic substate
- Naive expectation: Elastic substates of $n_{-}+n_{+}$motors form $\left(n_{-}+n_{+}\right)$-dimensional lattice
- Force balance: Constraint that reduces dimensionality to ($n_{-}+n_{+}-1$)-dimensional lattice

Elastic Substates for Activity State (2,1)

- $n_{-}+n_{+}-1=2$
- Elastic substates form 2-dimensional lattice
- x -coordinate $=$ 'separation’ of dynein 1 from kinesin
- y-coordinate $=$ 'separation’ of dynein 2 from kinesin
- 'Separation’ = \# of discrete steps from relaxed state

Hierachical State Space

Dynamics of Motor System

- Continuous time Markov process on discrete state space, master equations
- Many transitions and transition rates
- But all rates can be deduced from single motor rates
- Steady state probability distributions
- Force distributions for each motor Strong force fluctuations reduce average forces by force-induced unbinding ...
... but equal force sharing
- Time-dependent evolution of distributions

Strong Force Fluctuations

- Example: Strong dynein against kinesin-1
- Activity state $(2,1)$ with two dyneins plus one kinesin
- Distributions of single motor forces
- Strong dependence of average force on unbinding rates:

Realistic unbinding rates, $1 / \mathrm{s}$

Compared to MKL: Significant reduction of average force

Small unbinding rates, $1 / 100$ s

Compared to MKL:
Same average force

Equal Force Sharing

Ucar, RL, Scientific Rep. (2019)

- To address force sharing: Activity states $(2,1)$ or $(1,2)$
- Example: Two strong dyneins and one kinesin-1
- Steady state distributions:

Probability distribution for elastic substates: single maximum along diagonal

(a3)

Distributions for
spatial separation r and absolute value $|r|$ of two dyneins

Build-Up of Elastic Forces

Ucar, RL, Scientific Rep. (2019)

- Time evolution of force distributions and average forces:

Summary: Elastic Tug-of-War

- Discrete state space $=$ activity states plus elastic substates
- Activity state with n_{-}minus and n_{+}plus motors: elastic substates form a ($n_{-}+n_{+}-1$)-dimensional lattice
- Many transitions and transition rates but all rates are based on single motor rates
- Strong force fluctuations + equal force sharing
- For realistic values of the unbinding rates: significant reduction of single motor forces
- Limit of small unbinding rates: average forces approach average force of MKL model
=> Elastic tug-of-war improves MKL model and allows
to determine additional force-dependent properties

Outlook on Motor Traffic: Patterns and Phase Transitions

$$
\text { J. Stat. Phys. } 113 \text { (2003) }
$$

- Tube with two open boundaries:

MT transitions related to ASEP phases

Europhys. Lett. 66 (2004)

- Traffic of two motor species in tubes: Symmetry breaking MT transition

- Traffic of filaments along substrates: Isotropic-nematic MT transition

Phys. Rev. Lett. 96 (2006)

Traffic in a half open tube

MKL, J. Phys. CM 17 (2005)

- Half open tube:
left boundary open, reservoir of motors $=$ 'cell body' right boundary closed $=$ 'Synapse'
- (+) Motors (kinesins) moving to the right
- (-) Motors (dyneins) moving to the left

Concentration gradients created by motors

Mehmet Ucar

- Membranes

Rumiana Dimova Tom Robinson Jaime Agudo-Canalejo Tripta Bhatia Yunuen Avalos Padillo Jan Steinkühler

- Motors + Ribosomes

Stefan Klumpp Sophia Rudorf Mehmet Ucar Stefanie Foerste Nadin Haase Simon Christ

- Collaborations

Marina Rodnina Joachim Spatz Tony Hyman Günther Kramer Roy Bar-Ziv

