Morph Complexity and Topological Transformations of Membranes

Reinhard Lipowsky MPI of Colloids and Interfaces, Potsdam, Germany

- Shape of Membranes
- Giant Vesicles and Nanovesicles
- Morph Complexity ~ Membrane Necks
- Topological Transformations
- Fission of Membrane Necks

Shape of Cellular Membranes

• Plasma membranes:

• Intracellular membranes:

Red blood cells

White blood cell

Single Purkinje cell

Animal

Plant

Amoeba

20 January 2021

Intracellular Vesicle Trafficking

- Colored dots indicate budding of organelle membranes
- Budding and fission via formation of membrane necks

Endoplasmic Reticulum (ER)

• ER = network of membrane nanotubes with junctions

reticular network = yellow

reticular network = light blue

20 January 2021

Valm et al. Nature (2017)

Synthetic Membrane Compartments

Steinkühler et al, Nature Comm (2020)

- Giant unilamellar vesicles (GUVs)
- Shape transformations by optical microscopy
- Understanding based on curvature elasticity
- Nanovesicles (SUVs)
- Electron microscopy: limited to a single snapshot for each individual nanovesicle
- Shape transformations by Molecular Dynamics simulations:

5 µm

Ghosh, Satarifard et al, Nano Letters (2019)

20 nm

- Shape of Membranes
- Giant Vesicles and Nanovesicles
- Morph Complexity ~ Membrane Necks
- Topological Transformations
- Fission of Membrane Necks

Morph Complexity of GUVs

- Giant Unilamellar Vesicles (GUVs), size of $5 50 \ \mu m$
- Lipid bilayers, thickness of 4 -5 nm
- Many different shapes with membrane necks:

Exposed to His-tagged GFP in exterior solution

Steinkühler et al, *Nature Comm* (2020)

20 January 2021

Sucrose inside, glucose outside

Bhatia et al, Soft Matter (2020)

Bilayer contains GM1 with bulky head group Bhatia et al, ACS Nano (2018)

Key Parameter: Spontaneous Curvature

- Lipid bilayer consists of two leaflets
- Spontaneous or preferred curvature *m* describes transbilayer asymmetry = asymmetry between two leaflets
- Different molecular mechanisms for spont curvature:

Binding of GFP to outer leaflet Adsorption layer of glucose

Adsorption of glycolipid GM1

Membrane Necks or 'Wormholes' Neck formation by Neck formation by increase of [GFP] osmotic deflation: B' 6.7 s 9 s C'13.4 s15.7 s

'Wormhole in 3-dim space'

- Membrane forms (1+1)-sphere connected by 'wormhole'
- Budding and neck formation \Leftrightarrow spontaneous curvature

Steinkühler et al, Nature Comm (2020)

В

Closed Neck of (1+1)-Sphere

- (1+1)-sphere for positive spont curv, m > 0
- Large and small sphere with radius R_l and R_s
- Connected by closed membrane neck
- Neck curvature $M_{\rm ne} = (1/2) (1/R_l + 1/R_s)$
- Closed neck is stable if $0 < M_{ne} \le m$
- Local relation between geometry and spont curvature m = material parameter
- Stability criterion obtained from curvature elasticity
- Theory of curvature elasticity ignores molecular details
- What about membrane necks on the molecular scale?

Closer Look at Membrane Neck

- MD simulations: Hour-glass shape of neck
- Neck has waistline with radius R_{ne}
- Waistline has mean curvature

 $M_{\rm wl} = (1/2) (C_1 + C_2)$

with principal curvatures C_1 and $C_2 = 1/R_{ne}$

- Neck closure implies vanishing R_{ne} and divergent C_2 !
- Divergence of C_2 cancelled by divergence of C_1
- Finite limit $M_{\rm wl} \approx M_{\rm ne} = (1/2) (1/R_l + 1/R_s)$

Multispheres: Theory

RL, Advances in Biomembranes and Lipid Selfassembly Vol. 30 (2019) Ch. 3

- Single membrane forms several spheres, with pairs of neighboring spheres connected by membrane necks:
- Only two possible radii
- Large spheres with radius R_l
- Small spheres with radius R_s
- $(N_l + N_s)$ -spheres
- Example: $N_l + N_s \le 4$
- Overlapping stability regimes

Multispheres: Experiment

• $(1+N_s)$ -spheres, one large, N_s small spheres:

Bhatia et al, Soft Matter (2020)

- $(a) \longrightarrow (b) \longrightarrow (c) \longrightarrow (c) \longrightarrow (d) \longrightarrow (d)$
- Only two different radii, R_l and R_s
- Each shape formed by single membrane
- N_s membrane necks
- In general: $(N_l + N_s)$ -spheres with $N_l + N_s 1$ necks
- Surprising mobility: linear \Leftrightarrow branched chains
- Degenerate case: *N*^{*} equally sized spheres

Active Neck Oscillations of GUVs

Christ, Litschel, Schwille, RL, Soft Matter (in press)

- Shape oscillations generated by Min protein system coupled to ATP
- Dumbbell shape with recurrent closure and reopening of neck
- 26 complete oscillations
- Two branches of dumbbells, symmetric and asymmetric ones
- Oscillations of bound Min proteins
- Oscillations of spont curvature
- Oscillations of neck radius

14

Fine Tuning of GUV Morphologies

Steinkühler et al, Nature Comm. (2020)

• Binding of GFP to small mole fraction of anchor NTA-lipids:

His-tagged GFP NTA-lipids

- Dilute regime, no crowding !
- Nanomolar GFP concentration X as control parameter
- Density Γ of bound GFP increases linearly with X
- Spont curvature *m* increases linearly with $\Gamma \sim X$

Controlled Budding of GUVs

• Morphology determined by volume and spont curvature (rescaled):

• Volume via osmotic conditions Sp-curvature via GFP concentration

Constriction Force from Spont Curvature

RL, Advances in Biomembranes and Lipid Selfassembly Vol. 30 (2019) Ch. 3

• Sp-curvature *m* generates constriction force *f* acting radially on membrane neck:

 $f = 8\pi \kappa (m - M_{\rm ne})$

- Increase of *m* for fixed *v*
- Fixed shape of (1+1)-sphere
- Constriction force f increases

Controlled Budding of Nanovesicles

Ghosh, Satarifard et al: Nano Letters (2019)

- Spherical nanovesicle with diameter of 36 nm
- Assembly of lipids into inner and outer leaflet
- Controlled number of inner and outer lipids, N_{il} and N_{ol}
- Decreasing vesicle volume v, corresponding to deflation
- Formation of dumbbell with closed neck for

20 January 2021

Polymorphism of Nanovesicles

Ghosh, Satarifard et al, Nano Letters (2019)

- Four spherical vesicles with diameter 36 nm
- Same volume
- Same total # of lipids
- Different inner and outer lipids, N_{il} and N_{ol}
- Reduction of volume: very different shapes

Fine Tuning of SUV Morphologies

- Two leaflets with different lipid numbers
- Tensionless bilayer:

One leaflet stretched, the other leaflet compressed

- Spherical vesicle with radial coordinate r
- Spont curvature *m* from stress profile *s*(*r*) across bilayer:

$$2\kappa \left(\frac{1}{R_{\rm mid}} - m\right) = \int_0^\infty \mathrm{d}r \ s(r)r$$

Ghosh, Satarifard et al, Nano Letters (2019)

Shape Oscillations of Nanovesicles

Ghosh, Satarifard, Grafmüller, RL (submitted)

• Nanovesicle exposed to small solutes (orange) that adsorb onto vesicle membrane:

20 January 2021

- Shape of Membranes
- Giant Vesicles and Nanovesicles
- Morph Complexity ~ Membrane Necks
- Topological Transformations
- Fission of Membrane Necks

Topology of Surfaces

• Closed surface with F faces, E edges, and V vertices

cube

tetrahedron

icosahedron

- Euler characteristic $\chi = F E + V$
- For tetrahedron, cube, ..., and sphere: $\chi = 2$
- Euler characteristic is topological invariant
- Euler characteristic is additive: $\chi = 2 + 2 = 4$ for two spheres

Topology of Multispheres

• All multispheres have the same topology as a single sphere !

All multispheres have the same Euler characteristic

 $\chi = 2$

Topological Transformations

 \bullet Topological classification via Euler characteristic $\chi\;$:

- Topological transformation \Leftrightarrow change $\Delta \chi = \chi_{fin} \chi_{ini}$
- Fission: Euler characteristic $\Delta \chi > 0$
- Fusion: Euler characteristic $\Delta \chi < 0$

Fission of Membrane Necks

- Membrane fission implies disrupture/cut of membrane
- Work of fission proportional to length of cut
- Shortest possible cut for dumbbell across membrane neck:

Neck Fission of GUVs

07:27

+GFP-HIS

Steinkühler et al: Nature Comm. (2020)

07:41

+GFP-HIS

• Osmotic deflation + GFP binding

01:09

- Osmotic deflation: Spherical GUV -> dumbbell GUV
 - Increase in GFP -> Neck cleavage -> Two daughter GUVs

Adsorption of GFP onto GUV membrane

Deflation leads to dumbbell with membrane neck Directly after neck cleavage Complete division into two smaller GUVs

20 January 2021

Neck Fission of GUVs: Movie

Steinkühler et al: Nature Comm. (2020)

- Two-step process:
- Osmotic deflation: Spherical GUV -> dumbbell GUV
- Increase in GFP -> Neck cleavage + GUV division

Neck Fission of Nanovesicles

Ghosh, Satarifard, Grafmüller, RL (submitted)

• Nanovesicle exposed to small solutes (orange) that adsorb onto vesicle membrane:

20 January 2021

Recent References

- T. Bhatia, S. Christ, J. Steinkühler, R. Dimova, RL Simple sugars shape giant vesicles into multispheres with many membrane necks. *Soft Matter* (2020) 16, 1246-1258
- J. Steinkühler, R. Knorr, Z. Zhao, T. Bhatia, S. Bartelt, S. Wegner, R. Dimova, RL Controlled division of cell-sized vesicles by low densities of membrane-bound proteins. *Nature Comm* (2020) 11, article 905
- S. Christ, T. Litschel, P. Schwille, RL Active shape oscillations of giant vesicles with cyclic closure and opening of membrane necks.. Soft Matter (2020) DOI: 10.1039/d0sm00790k
- R. Ghosh, V. Satarifard, A. Grafmüller, RL Spherical nanovesicles transform into a multitude of nonspherical shapes. Nano Letters (2019) 19, 7703-7711
- R. Ghosh, V. Satarifard, A. Grafmüller, RL Budding and fission of nanovesicles induced by membrane adsorption of small solutes. (submitted)
- RL, Understanding and controlling the morphological complexity of biomembranes. *Advances in Biomembranes and Lipid Selfassembly*, Vol. 30 (Academic Press, 2019) Ch. 3
- RL, Understanding giant vesicles a theoretical perspective. *The Giant Vesicle Book* (Taylor & Francis, 2020) Ch. 5

Coworkers

Bhatia

Rumiana Dimova

Jan Steinkühler

Ziliang Zhao

Simulation

Ghosh

Andrea Grafmüller

Vahid Satarifard

Simon Christ

Joint projects with: Joachim Spatz Seraphine Wegner Solveig Bartelt Petra Schwille Thomas Litschel Tony Hyman Titus Franzmann