Remodeling Shape and Topology of Fluid Membranes by Curvature and Tension

> Reinhard Lipowsky MPI of Colloids and Interfaces, Potsdam, Germany

- Membrane Compartments
- Remodeling of Membrane Shape
- Membrane Necks and Multispheres
- Remodeling of Membrane Topology
- Fission and fusion processes

Intracellular Vesicle Trafficking

- Colored dots: vesicle formation by budding and fission
- Arrowheads: vesicle uptake by adhesion and fusion

Synthetic Membrane Compartments

Steinkühler et al, Nature Comm (2020)

- Giant vesicles or GUVs
- Remodeling observed by optical microscopy

- Nanovesicles or SUVs
- Electron microscopy: limited to a single snapshot for each individual nanovesicle
- Remodeling studied via Molecular Dynamics simulations

Ghosh, Satarifard et al, Nano Letters (2019)

20 nm

- Remodeling of membrane shape
 - Examples for GUVs and nanovesicles
 - Membrane elasticity
 - Membrane necks and multispheres
- Remodeling of membrane topology
 - Relation to fission and fusion processes
 - Fission of membrane necks

Budding of Giant Vesicles

- Pear-like vesicle transformed into two-sphere vesicle
- Snapshots from time lapse over 16 s:

Bhatia et al, Soft Matter (2020)

Scale bar: 5 µm

'Fluid worm hole in three dimensions'

- Membrane exposed to asymmetric sucrose/glucose solutions
- Membrane forms two spheres connected by a single neck
- Same membrane system leads to proliferation of necks !

Multispheres with Many Necks

- One membrane forms several spheres connected by necks
- Each shape involves only two different sphere radii

Controlled Budding of GUVs

Steinkühler et al, *Nature Comm* (2020)

- Vesicles exposed to His-tagged GFP in the exterior solution
- GFP binds to anchor lipids in the vesicle membrane
- Membrane curvature fine-tuned by nanomolar concentration of GFP
- Low densities of membrane-bound GFP generate strongly curved membranes

KITP, 15 June 2021

GUVs and Aqueous Phase Seperation

Li et al, PNAS (2011) Liu et al, ACS Nano (2016)

- Aqueous phase separation within giant vesicles
- Example: PEG and dextran in water
- Formation of many stable nanotubes, no pulling forces
- Wetting properties determine patterns of nanotubes:

Complete wetting: tubes stay in one liquid phase

Partial wetting: tubes bind to liquid-liquid interface

Active Shape Oscillations of GUVs

- Min proteins D and E in interior solution
- MinD/E binds to membrane and unbinds via ATP hydrolysis

Litschel et al, Angewandte Chemie (2018)

Christ et al, Soft Matter (2021)

- Cyclic closure and opening of membrane neck
- Time-dependent spontaneous curvature

Remodeling of Nanovesicle Shape

• Spherical nanovesicles with diameter of 36 nm

Ghosh, Satarifard et al, Nano Letters (2019)

• Shape transformations by volume reduction

- Inner leaflet compressed
- Outer leaflet compressed

• Controlled by mechanical tensions in the two leaflets

Non-axisymmetric Membrane Necks

Satarifard et al, ACS Nano (2018)

- Engulfment of nanodroplet (blue) by lipid bilayer
- Neck shape controlled by mechanical bilayer tension:

• Formation of tight-lipped neck reveals negative line tension of contact line

Elasticity of Fluid Membranes

- Biomembrane as thin elastic sheet
- Elastic Deformations

Stretching	\rightarrow
Shearing	☐ → /
Bending	$ \rightarrow $

• Fluid Membranes

Membrane tension

Shear -> Flow

Curvature elasticity

Theory of Membrane Elasticity

- Elastic stretching: Area A and tension Σ Mechanical tension Σ = K_A (A – A₀)/A₀ area compressibility modulus K_A, optimal area A₀ Stretch energy E_{st} = ¹/₂ K_A (A – A₀)²/A₀
 Elastic bending: mean curvature M
 - Bending energy $E_{be} = \int dA \ 2 \ \kappa \ (M m)^2$

bending rigidity κ , spontaneous curvature *m*

• Total elastic energy: Stretch energy + bending energy

$$E_{\rm el} = E_{\rm st} + E_{\rm be} = \frac{1}{2} K_A (A - A_0)^2 / A_0 + E_{\rm be}$$

Composite Nature of Membrane Tension

- Mechanical tension Σ plus spontaneous tension $\sigma = 2 \kappa m^2$
- Spontaneous tension leads to spontaneous tubulation
- Total membrane tension $\Sigma_{tot} = \Sigma + \sigma$

Lipowsky, Faraday Disc (2013)

- Spontaneous tension $\sigma = 2 \kappa m^2$ is material parameter
- Tension σ measured by micropipette Bhatia et al, aspiration of tubulated GUVs Bhatia (2018)
- Mechanical tension Σ depends on vesicle size and shape
- Difficult to measure, exact computation for multispheres

Bilayer and Leaflet Tensions

- Bilayer membrane consists of two leaflets, *l*1 and *l*2
- Mechanical bilayer tension $\Sigma = \Sigma_{l1} + \Sigma_{l2}$
- Tensionless bilayers: $\Sigma = 0$ implies $\Sigma_{l2} = -\Sigma_{l1}$
 - => One leaflet stretched and one leaflet compressed
- Unique reference state with $\Sigma_{l2} = \Sigma_{l1} = 0$

Leaflet Tensions without Flip-Flops

Sreekumari, RL, *JCP*(2018)

- Planar bilayer, two lipids A and B
- Lower leaflet contains only lipid B
- Leaflet tensions versus mole fraction of lipid A in upper leaflet

Ghosh, Satarifard et al, Nano Letters (2019)

- Spherical nanovesicle, one lipid A
- Fixed total number of lipids $N = N_{ol} + N_{il}$
- Leaflet tensions versus lipid number N_{ol} of outler leaflet

Leaflet Tensions with Flip-Flops

Miettinen, RL, Nano Letters (2019)

- Tensionless planar bilayer with two lipids (blue and red)
- Addition of cholesterol (orange) to both leaflets:

- Cholesterol undergoes flip-flops between leaflet
- Leaflet tensions decay to zero

- Remodeling of membrane shape
 - Examples for GUVs and nanovesicles
 - Membrane elasticity
 - Membrane necks and multispheres
- Remodeling of membrane topology
 - Relation to fission and fusion processes
 - Fission of membrane necks

Separation of Length Scales

Nanoscale: Hourglass-shaped neck

Micron scale: Pointlike neck

- Bilayer thickness \ll vesicle size $R_{\rm ve} = \sqrt{A/(4\pi)}$
- Simple relations for local properties of necks
- Neck closure: principal curvatures of waistline diverge but mean curvature M_{wl} remains finite

Local Properties of Membrane Necks

- Limiting value: $M_{\rm wl} \approx \frac{1}{2} \left(M_l + M_s \right) \equiv M_{\rm ne}$
- Defines neck geometry via neck curvature $M_{\rm ne}$
- Stability of closed neck depends on spontaneous curvature m: neck is stably closed for $M_{ne} \le m$
- Constriction force at neck, $f = 8\pi \kappa (m M_{ne})$
- Total membrane tension $\Sigma_{\text{tot}} = 4 \kappa m M_{\text{ne}}$
- Mechanical membrane tension $\Sigma = 2 \kappa m (2M_{ne} m)$
- Relations between local neck geometry and elastic parameters

Multispheres: Geometry

RL, Advances Biomembranes and Lipid Selfassembly, Vol. 30 (2019)

- Multispheres with large and small spheres
- Rescaled large sphere radius r_l and small sphere radius r_s
- Multispheres consisting of N_l large and N_s small spheres
- $(N_l + N_s)$ -geometry determined by two simple equations:

$$N_{l} r_{l}^{2} + N_{s} r_{s}^{2} = 1$$
$$N_{l} r_{l}^{3} + N_{s} r_{s}^{3} = v$$

- Two nonlinear equations for two unknowns r_l and r_s
- Simple equations generate morphological complexity

Multispheres up to $N_l + N_s \le 4$

KITP, 15 June 2021

$(1+N_s)$ -Multispherical Vesicles

Bhatia et al, Soft Matter (2020)

• $(1+N_s)$ -spheres with one large sphere and a chain of N_s small spheres:

(*N*_{*})-Multispherical Vesicles

Bhatia et al, Soft Matter (2020)

• Multispheres consisting of *N*^{*} equally sized spheres:

• Surprising mobility: linear 🗇 branched chains

- Remodeling of membrane shape
 - Examples for GUVs and nanovesicles
 - Membrane elasticity
 - Membrane necks and multispheres
- Remodeling of membrane topology
 - Relation to fission and fusion processes
 - Fission of membrane necks

Topology of Surfaces

• Closed surface with F faces, E edges, and V vertices

cube

tetrahedron

icosahedron

sphere

- Euler characteristic $\chi = F E + V$
- For tetrahedron, cube, ..., and sphere: $\chi = 2$
- Euler characteristic is topological invariant
- Euler characteristic is additive: $\chi = 2 + 2 = 4$ for two spheres

Remodeling of Membrane Topology

 \bullet Topological classification via Euler characteristic $\chi\;$:

- Topological transformation \Leftrightarrow change $\Delta \chi = \chi_{fin} \chi_{ini}$
- Fission: Euler characteristic $\Delta \chi > 0$
- Fusion: Euler characteristic $\Delta \chi < 0$

Fission of Membrane Necks

- Membrane fission implies disrupture/cut of membrane
- Work of fission proportional to length of cut
- Shortest possible cut for dumbbell across membrane neck:

Neck Fission of GUVs

07:27

+GFP-HIS

Steinkühler et al: Nature Comm. (2020)

07:41

+GFP-HIS

• Osmotic deflation + GFP binding

01:09

- Osmotic deflation: Spherical GUV -> dumbbell GUV
 - Increase in GFP -> Neck cleavage -> Two daughter GUVs

Adsorption of GFP onto GUV membrane

Deflation leads to dumbbell with membrane neck Directly after neck cleavage Complete division into two smaller GUVs

KITP, 15 June 2021

Constriction Force from GFP

• Small GFP concentrations *X* in the solution generate large spontaneous curvature

Steinkühler et al: *Nature Comm*. (2020)

$$m = \frac{1.86}{\mu m} \frac{X}{nM}$$
 for $0 < X < 24$ nM

Constriction force

$$f = 8\pi \kappa (m - M_{\rm ne})$$

Neck Fission of Nanovesicles

Ghosh et al, ACS Nano (2021)

• Nanovesicle exposed to small solutes (orange) that adsorb onto vesicle membrane:

KITP, 15 June 2021

Fusion of Nanovesicles

Shillcock, RL, *Nature Materials* (2005) Grafmüller et al, *Phys. Rev. Lett.* (2007) Gao et al, *Soft Matter* (2008)

- Two nanovesicles under mechanical tension $\Sigma \sim (A-A_0)/A_0$
- After local contact, fusion pore opens within 2 μ s

• Important role of tension in both fusion and fission processes !

KITP, 15 June 2021

Coworkers

Tripta Rumiana Bhatia Dimova

Yonggang Liu

Jan Steinkühler

Ziliang Zhao

Joint projects with: Petra Schwille **Thomas Litschel** Seraphine Wegner Solveig Bartelt

Rikhia Ghosh

Andrea

Markus Grafmüller Miettinen

Vahid Satarifard

Aparna Sreekumari

Simon Christ

• Ongoing projects: Joachim Spatz, Petra Schwille, Tony Hyman, Titus Franzmann

Recent References

Experiment

imulation

S

- Y. Liu, J. Agudo-Canalejo, A. Grafmüller, R. Dimova, RL. Patterns of flexible nanotubes ... *ACS Nano* (2016) 10, 463-474.
- T. Bhatia, J. Agudo-Canalejo, R. Dimova, RL.
- Membrane nanotubes increase the robustness ... ACS Nano (2018) 12, 4478-4485.
- T. Bhatia, S. Christ, J. Steinkühler, R. Dimova, RL. Simple sugars shape giant vesicles into multispheres ... *Soft Matter* (2020) 16, 1246-1258.
- J. Steinkühler, R. Knorr, Z. Zhao, T. Bhatia, S. Bartelt, S. Wegner, R. Dimova, RL. Controlled division of cell-sized vesicles ... *Nature Comm* (2020) 11, article 905.
- S. Christ, T. Litschel, P. Schwille, RL. Active shape oscillations of giant vesicles ... *Soft Matter* (2021) 17, 319-330
- A. Sreekumari, RL. Lipids with bulky head groups generate ... J. Chem. Phys. (2018) 084901.
- V. Satarifard, A. Grafmüller, RL. Nanodroplets at membranes create tight-lipped ... *ACS Nano* (2018) 12, 12424-12435.
- M. Miettinen, RL. Bilayer membranes with frequent flip-flops ... *Nano Letters* (2019) 19, 5011-5016
- R. Ghosh, V. Satarifard, A. Grafmüller, RL Spherical nanovesicles transform into ... *Nano Letters* (2019) 19, 7703-7711
- R. Ghosh, V. Satarifard, A. Grafmüller, RL Budding and fission of nanovesicles ... ACS Nano (2021) 15, 7237-7248
- RL, Understanding and controlling the morphological complexity of biomembranes. Advances in Biomembranes and Lipid Selfassembly, Vol. 30 (Academic Press, 2019) Ch. 3