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Multiscale Biomembranes

• Lipid bilayer

• Animal cell

• Biomembrane

4 nm

• Endoplasmic reticulum (ER)
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Endoplasmic Reticulum (ER)
• ER = network of membrane nanotubes with three-way junctions
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Tubes with yellow fluo-labels

10 µm

Tubes with green fluo-labels
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Synthetic Membrane Compartments

• Giant unilamellar vesicles or GUVs
• Remodeling observed by optical microscopy
• Understanding in terms of curvature elasticity
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• Nanovesicles or NVs
• Electron microscopy: limited to a single
  snapshot for each individual nanovesicle 
• Remodeling of NVs can be studied via 
  Molecular Dynamics simulations

5 µm

20 nm
• In both cases: Formation of membrane necks
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Remodeling of Shape and Topology

• Remodeling of membrane shape

• Polymorphism of nanovesicles and GUVs

• Multispherical shapes with many necks:
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• Remodeling of membrane topology

• Membrane fission and fusion

• Requires formation of membrane neck:

Topology of
single sphere!
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• Introduction to Biomembranes

• Remodeling of Nanovesicles

• Remodeling of GUVs

• Outlook on Endoplasmic Reticulum  
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Shape Remodeling of Nanovesicles
• Spherical NVs by assembly of 104 lipids
• Midsurface of bilayer has diameter of 35 nm
• Shape remodeling  by volume reduction:
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Rikia Ghosh, V. Satarifard et al
Nano Letters (2019)

• Controlled by lipid numbers assembled in two leaflets:
Nil lipids in inner leaflet, Nol lipids in outer leaflet
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Bilayer and Leaflet Tensions
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planar
bilayer

bilayer of
nanovesicle

• Each bilayer consists of two leaflets, l1 and l2 
• Mechanical bilayer tension S = Sl1 + Sl2

• Leaflet tensions Sl1 and  Sl2 of two leaflets, l1 and l2 
• Low bilayer tension to avoid membrane rupture
• Tensionless bilayers: S = 0 implies Sl2 = – Sl1

  =>  One leaflet stretched and one leaflet compressed

• Unique reference state with tensionless leaflets, Sl2 =  Sl1 = 0
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Nanovesicles with Tensionless Bilayers

• Spherical nanovesicles with fixed total number Nil + Nol  of lipids
• Reshuffling lipids from inner to outer leaflet
• Impose low bilayer tension S = Sil + Sol  ≈  0

• Reshuffling leads to increased Sil  (red) and descreased Sol (blue) :
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R. Ghosh, V. Satarifard et al, Nano Letters (2019)

• Positive tensions for 
stretched leaflets

• Negative tensions for
compressed leaflets

• Reference state with 
tensionless leaflets

One stretched and one
compressed leaflet
define stress asymmetry
between leaflets
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Nanovesicles with Tensionless Leaflets
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Aparna Sreekumari 
and RL,  Soft Matter (2022)

• Reference state with vanishing leaflet tensions Sil = Sol  = 0
• But different lipid numbers Nol and Nil in two leaflets
• Lipid number asymmetry of reference states:

- Vesicle diameter of 35 nm :  Nol = 1.5 Nil 
- Vesicle diameter of 19 nm :  Nol = 2.0 Nil 

  - Vesicle diameter of 13 nm :  Nol = 2.9 Nil 

• In addition: different areas per lipid in outer and inner leaflet
• Outer leaflet  more densely packed than inner leaflet 

ÞLipid number asymmetry of reference state
depends on vesicle size
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Stability of Assembled Bilayers
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• Reference states with tensionless leaflets = most stable states
• Stability of assembled bilayers in general?
• Stability regime bounded by two instability lines 
• Nanovesicle with 19 nm diameter:  

• Limited range of
  lipid numbers 

• Limited range of
   leaflet tensions

A. Sreekumari and RL,  Soft Matter (2022)

Unstable  outer leaflet Unstable  inner leaflet
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Instabilities of Assembled Bilayers
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• Flip-flops of lipids 
  between leaflets: 

A. Sreekumari and RL,  Soft Matter (2022)

• Structural instabilities: 

• Inset: Flip-flop rate controlled
  by leaflet tensions
• Sigmoidal shape implies ageing

• Self-healing process
• Restored bilayer with  reduced 
  leaflet tensions
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Endocytosis of Droplets by NVs
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• Adhesion of liquid droplets to NVs: 
R. Ghosh et al  (under revision)

• Liquid-liquid phase separation leads to a droplet within b phase

• Spreading -> partial engulfment -> complete engulfment -> …
19 September 2022



Pathway I: Complete Endocytosis
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• Complete axisymmetric engulfment of droplet followed by
   fission of membrane neck and division of  nanovesicle into 
   two nested daughter vesicles :  

R. Ghosh et al  (under revision)

Top view:

Side view:

• Remodeling of membrane topology: One NV into two NVs
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Pathway II: Incomplete Endocytosis
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• Complete non-axisymmetric engulfment of droplet leading to
  tight-lipped membrane neck which prevents neck fission and 
  vesicle division: 

R. Ghosh et al  (under revision)

Top view:

“Orthogonal“
  side view:

• Pathway controlled by leaflet tensions plus line tension of 
  contact line between NV membrane and droplet
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• Introduction to Biomembranes

• Remodeling of Nanovesicles

• Remodeling of GUVs

• Outlook on Endoplasmic Reticulum  
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Budding of Giant Vesicles

• Pear-like vesicle transformed into two-sphere vesicle
• Snapshots from time lapse over 16 s: 

‘Fluid worm hole in 
three dimensions’
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T.ripta Bhatia et al, Soft Matter (2020)

• Membrane exposed to asymmetric sucrose/glucose solutions
• Membrane forms two spheres connected by a single neck
• Driven by transbilayer asymmetry = spontaneous curvature

Scale bar: 5 µm 
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Multispheres with Many Necks
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T. Bhatia et al, Soft Matter (2020)

• One membrane forms several spheres connected by necks
• Each shape involves only two different sphere radii

Scale bar: 10 µm 
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Equally Sized Spheres

• Surprising mobility: linear ó branched chains

• Multispheres consisting of N* equally sized spheres: 
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N* = 14
branched 

N* = 15
branched 

N* = 39
branched 

N* = 15
branched 

N* = 24
linear 

T. Bhatia et al,  Soft Matter (2020)
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Controlled Budding of GUVs
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• Vesicles exposed to His-tagged GFP
in the exterior solution

• GFP binds to anchor lipids in the
vesicle membrane

• Spontaneous curvature fine-tuned by
nanomolar concentration of GFP

• Low densities of membrane-bound GFP
generate strongly curved membranes

J. Steinkühler et al,  Nature Comm (2020) 

No GFP        + GFP

30 nmGFP GFP
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Neck Fission and Division of GUVs

• Osmotic deflation + GFP binding
• Osmotic deflation: Spherical GUV -> dumbbell GUV
  Increase in GFP  -> Neck cleavage -> Two daughter GUVs 

Adsorption of
GFP onto GUV
membrane

Deflation leads to
dumbbell with
membrane neck

Directly after
neck cleavage 

Complete division
into two smaller 
GUVs
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J. Steinkühler et al:  Nature Comm. (2020)
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Binding of His-Tagged Fluorophores

• His-tagged GFP generates large spontaneous curvature
• What about other His-tagged molecules?
• Tag of six histidines (6H) binding to NTA(Ni) anchor lipids
• Compare 6H-GFP, a large dye, with 6H-FITC, a small one
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Shreya Pramanik et al, Soft Matter (2022)

6H-GFP 6H-FITC
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Fluorescence Intensity versus Concentration

• Fluorescence intensity I versus molar concentration X
• Binding of at most one 6H-dye to each anchor lipid implies

Dissociation equilibrium constant Kd and saturation intensity Isat
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I = Isat X / (Kd + X)

6H-GFP 6H-FITC

Kd = 37.5 nM
Isat = 320

Kd = 18.5 nM
Isat = 40.9

Pramanik et al, Soft Matter (2022); Poster 75
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Binding Affinity and Quenching

• Smaller  Kd of 6H-FITC implies increased binding affinity 
• Smaller Isat implies reduced brightness of bound 6H-FITC
• Both conclusions can be reconciled by fluorescence quenching
• Confirmed by independent measurements: 
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6H-GFP 6H-FITC

Pramanik et al, Soft Matter (2022); Poster 75
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• Remodeling of Nanovesicles

• Remodeling of GUVs

• Outlook on Endoplasmic Reticulum  
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Morphological Complexity of  ER
• Membrane-enclosed 
   organelle  
• Each eukaryotic cell
  contains only one ER
• Network of membrane
   nanotubes (yellow) 
• Tubes have a width 
   of ~ 80 nm
• Reticular network ~ 
  cell size ~ 80 µm 
• Meshsize of irregular
  polygons ~ 1 µm

• Network formed by a
  single membrane !
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Multiscale Morphology of ER

• Thickness of ER bilayer ~ 4 nm 

• Diameter of nanotubes  ~ 80 nm

• Mesh size of polygons ~ 1 µm

• Extension of reticular network ~ 80 µm 
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10 µm

Hierarchy of four length scales: 
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Reticular Networks, In Vivo

• Primarily three-way junctions, at which three tubules meet
• Irregular polygons with angles of 120o
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• Membrane nanotubes connected by junctions

10 µm
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Reticular Networks, In Vitro

• Left: Proteoliposomes with membrane GTPase
• Right: Network formation after addition of GTP
• No cytoskeletal components, only membranes ! 
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Junctions and Membrane Tension

• Likewise, a stationary four-way junction between four nanotubes would
  lead to contact angles of 90o
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• Prevalence of three-way junctions observed in vivo since the 1980s
• But no explanation in the available ER literature

• Each three-way junction formed by three fluid nanotubes
• Force balance at a stationary three-way junction implies that all tubes 
  experience the same membrane tension and form contact angles of 120o :
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RL, Adv. Colloid Interface Sci. (2022)
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Prevalence of Three-Way Junctions
• However, the total tube length can be reduced by transforming the 
  four-way junction into two three-way junctions
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• Network of two three-way junctions represents a simple example of a
  Steiner minimal tree as studied in mathematical graph theory

• Conclusion: Significant membrane tension favors three-way junctions

• But how is this tension generated? => new project of Shreya Pramanik 

This transformation is 
possible because the
ER membrane is fluid
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Collaborations with the labs of: 
Joachim Spatz, Seraphine Wegner, Petra Schwille, Anna Shnyrova 
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