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Biomembranes are Fluid Surfaces

• Fluid membranes, i.e., 
  fast lateral diffusion:

4 nm

lipid swapping ~ nsDiffusion constant ~ µm2 /s

• Flexibility => 
  Morphological responses,  
  budding, tubulation, ...
  Direct evidence for fluidity

20 µm

• Lateral diffusion => 
  Compositional responses,   
  demixing, domain formation ...
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Morphological Complexity of GUVs
• Giant Unilamellar Vesicles (GUVs), size of 5 – 50 µm
• Lipid bilayers,  thickness of 4 -5 nm
• Many different shapes with membrane necks:

Dumbbell, (1+1)-sphere,
one membrane neck

(1+14)-sphere,
14 necks

Long nanotubes,
width of 100 nm

Steinkühler et al,
Nature Comm (2020) 

Bhatia et al,
Soft Matter (2020)

Bhatia et al,
ACS Nano (2018)
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Fluid Architecture of Biomembranes

• Lipid bilayer

• Animal cell

• Biomembrane

4 nm

• Endoplasmic reticulum (ER)
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Endoplasmic Reticulum (ER)
• ER = network of membrane nanotubes with three-way junctions

5Reinhard Lipowsky, MPI-CI 
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Tubes with yellow fluo-labels

10 µm

Tubes with green fluo-labels
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Synthetic Membrane Compartments

• Giant unilamellar vesicles or GUVs
• Remodeling observed by optical microscopy
• Understanding in terms of curvature elasticity
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• Nanovesicles or NVs
• Electron microscopy: limited to a single
  snapshot for each individual nanovesicle 
• Remodeling of NVs can be studied via 
  Molecular Dynamics simulations

5 µm

20 nm
• In both cases: Formation of membrane necks

ASC, 18 January 2023



Remodeling of Shape and Topology

• Remodeling of membrane shape

• Polymorphism of nanovesicles and GUVs

• Multispherical shapes with many necks:
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• Remodeling of membrane topology

• Membrane fission and fusion

• Requires formation of membrane neck:

Topology of
single sphere!

ASC, 18 January 2023
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Elasticity of Fluid Membranes

•  Biomembrane as  thin elastic sheet

•  Elastic Deformations

    Stretching

Shearing 

     Bending       

•  Fluid Membranes

    Membrane tension

Shear  ->  Flow

     Curvature elasticity
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Elastic Energy
• Elastic stretching: Area A and stretching tension Sst 

                 Hooke‘s law  Sst = KA (A – A0)/A0

      area compressibility modulus KA , optimal area A0 

• Stretching energy  Est = !
"
 KA (A – A0)2/A0

• Elastic bending: Mean curvature M

  Bending energy Ebe = ∫ 𝑑𝐴 2 𝜅 𝑀 − 𝑚 2

       bending rigidity k ,  spontaneous curvature m
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• Elastic energy =  Stretch energy + bending energy 

      Eel = Est + Ebe =
!
"
 KA (A – A0)2/A0 + Ebe 



Curvatures from Diff Geometry
• Consider any smoothly curved surface 
• Normal section through surface creates
                         smooth curve on surface 
• Smooth curve has 1-dim curvature Cns

• Rotation of normal section changes curvature Cns 
         within the range Cmin ≤ Cns ≤ Cmax 

• Principal curvatures  C1 = Cmin  and  C2 = Cmax

• Mean curvature M = (C1 + C2)/2

• Gaussian curvature G = C1 C2
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Spontaneous Curvature 

• Lipid bilayer consists of two monolayers or leaflets
• Spontaneous or preferred curvature m describes 
   transbilayer asymmetry =  asymmetry between two leaflets

• Different molecular mechanisms for spont curvature:

Binding of GFP
to outer leaflet

Adsorption layer
of glucose

Adsorption of 
glycolipid GM1
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Minimization of Elastic Energy
• Minimization with prescribed vesicle volume V

•  Shape functional:   F = – dP V + Est + Ebe

 with  Est=
!
"
 KA (A – A0)2/A0 and  Sst = KA (A – A0)/A0

• Pressure difference dP = Pin – Pex  is Lagrange multiplier

• Alternative procedure: 
  Minimization with prescribed V and prescribed area A

• Shape functional:  F = – dP V + S A + Ebe

• Two minimization procedures are equivalent:  
      Lagrange multiplier S =  stretching tension Sst

   
 
ASC, 18 January 2023 Reinhard Lipowsky, MPI-CI 13



• Shape functional:   

Shape Equation 

• Mean curv M, Gaussian curv G,  Laplace-Beltrami DLB

• Spontaneous curvature m, bending rigidity k

• Spherical membrane with radius R: 

M = 1/R, M2 = 1/R2 = G, simplified shape equation:

• Minimization with respect to normal displacements 
  => Euler Lagrange equation or shape equation:  

dP = 2 S M – 2k DLB M – 4k [M – m] [M (M + m) – G] 
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F = – dP V + Σ A + Ebe

dP = 2 (S + 2km2) M – 4k m M2 
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Multispherical Shapes

• Shape equation for spheres;

• Quadratic in mean curvature M
• Two solutions Ml and Ms for fixed dP and S
• Large sphere with radius Rl = 1/Ml  

• Small sphere with radius Rs = 1/Ms 

• Puncture spheres, connect punctures
of two spheres by membrane neck  

dP = 2 (S + 2km2) M – 4k m M2 
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RL, Advances in Biomembranes and Lipid Selfassembly Vol. 30, Ch. 3 (2019)

Rl

Rs

Rl
Rs



Stability of Closed Necks 

• Closed neck is stable if   

• Stable necks for sufficiently large spont curvature m

• Local relation between geometry and material parameter       

• Positive spont curvature m > 0

• Dumbbell with closed membrane neck
   corresponds to (1+1)-sphere

• Large and small sphere with radius Rl and Rs

• Neck curvature   Mne = (1/2) (1/Rl + 1/Rs)  

ve 

16

0 < Mne ≤ m

Rs

Rl
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Budding of Giant Vesicles

• Pear-like vesicle transformed into two-sphere vesicle
• Snapshots from time lapse over 16 s: 

‘Fluid worm hole in 
three dimensions’
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Bhatia et al, Soft Matter (2020)

• Membrane exposed to asymmetric sucrose/glucose solutions
• Membrane forms two spheres connected by a single neck
• Same membrane system leads to proliferation of necks !

Scale bar: 5 µm 



Multispheres with Several Necks
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Bhatia et al, Soft Matter (2020)

• One membrane forms several spheres connected by necks
• Each shape involves only two different sphere radii

Scale bar: 10 µm 



(1+Ns)-Multispherical Vesicles

• (1+Ns)-spheres with one large sphere and a
chain of Ns small spheres: 
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(1+4)        (1+5)          (1+6)              (1+7)

(1+8)       (1+8)       (1+14)             (1+15)

linear
chains

branched
chain

branched
chains

Bhatia et al, Soft Matter (2020)



Multispheres: Geometry 
RL, Advances Biomembranes and Lipid Selfassembly, Vol. 30 (2019)

• Multispheres consisting of Nl large and Ns small spheres
• (Nl + Ns)-geometry determined by two simple equations:

• Multispheres with large and small spheres
• Rescaled large sphere radius rl and small sphere radius rs 
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Nl  rl 
2+ Ns  rs 

2 = 1           
Nl  rl 

3+ Ns  rs 
3 = v

• Two nonlinear equations for two unknowns rl and rs

• Depend on single parameter, volume-to-area ratio v
• Two simple equations generate morphological complexity



Multispheres up to Nl + Ns ≤ 4
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Different Types of Membrane Necks

Reinhard Lipowsky, MPI-CI 23ASC, 18 January 2023

• Three types of closed membrane necks: 
ss-necks between two small spheres with radius Rs

ls-necks between large and small sphere, radius Rl and Rs

ll-necks between two large spheres with radius Rl

• Stability conditions:   0 < Mne = (1/2) (1/Rl + 1/Rs) ≤ m   
• Strongest condition and smallest stability regime for ss-neck 
• Weakest condition and largest stability regime for ll-neck
• Stability regime of multisphere from least stable neck



Multispheres with Nl+Ns = 4

Reinhard Lipowsky, MPI-CI 24ASC, 18 January 2023

Three types of closed membrane necks

Each shape displays
least stable neck

Four equally sized spheres 
with radius R*



Stability Regime for (1+1)-Spheres 
• Vesicle size Rve  as basic length scale
• Two dimensionless shape parameters:  
   volume-to-area ratio v and rescaled spont curvature  mRve

within yellow
stability regime: 
shape of (1+1)-sphere
depends only 
on v but not on mRve 

25ASC, 18 January 2023 Reinhard Lipowsky, MPI-CI 
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Stability Regimes for (Nl+Ns)-Spheres

Reinhard Lipowsky, MPI-CI 26ASC, 18 January 2023

Bhatia et al, Soft Matter (2020)



N* Equally Sized Spheres

• Each (N*)-multisphere has constant mean curvature M = 1/R*

• New examples  for constant-mean-curvature (CMC) surfaces

• Multispheres consisting of N* equally sized spheres: 

Reinhard Lipowsky, MPI-CI 27ASC, 18 January 2023

N* = 14
branched 

N* = 15
branched 

N* = 39
branched 

N* = 15
branched 

N* = 24
linear 

Bhatia et al,  Soft Matter (2020)
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CMC Surfaces and Curvature Elasticity

• Constant mean curvature M = m

• Simplified shape equation:

• Each CMC surface solves shape equation for M = m

• Bending energy of such a CMC surface vanishes !

• Euler Lagrange equation or shape equation:  

dP = 2 S M – 2k DLB M – 4k [M – m] [M (M + m) – G] 

dP = 2 S M 

ASC, 18 January 2023 Reinhard Lipowsky, MPI-CI 29



CMC Surfaces: Unduloids 
• Unduloids: tubular CMC shapes with a 
  periodic sequence of necks and bellies

• Multisphere for Rne = 0, cylinder for Rne = Rbel

• One-parameter family of CMC shapes with the same M

• Neck radius varies from Rne = 0 to Rne = 1/(2 M)

ASC, 18 January 2023 Reinhard Lipowsky, MPI-CI 30

Multisphere Unduloid Cylinder

Delaunay 1841 

• Neck radius Rne 

• Belly radius Rbel 

• M = 1/( Rne+Rbel )



CMC Surfaces: Triunduloids
• Triunduloids:  
  three unduloidal arms connected  by three-way junction

• Multispherical shape for Rne = 0, but no cylindrical arms

• One-parameter family of CMC shapes with the same M

• Neck radius varies from Rne = 0 to Rne = 1/(3 M)

ASC, 18 January 2023 Reinhard Lipowsky, MPI-CI 31

Grosse-Brauckmann and Polthier. 1997



Generalized CMC Surfaces
• Multispheres consisting of large and small spheres are

generalized CMC Surfaces with two values of M

Reinhard Lipowsky, MPI-CI 32ASC, 18 January 2023

• Mean curvature of large spheres Ml = 1/Rl

• Mean curvature of small spheres Ms = 1/Rs



Size of Individual Spheres

• So far: Individual spheres have radii of a few microns

Reinhard Lipowsky, MPI-CI 33ASC, 18 January 2023

Example: (1+15)-sphere
Large sphere radius Rl = 6 µm
Small sphere radius Rs = 2 µm
Imaging by light microscopy

• Size of small spheres ~ inverse spont curvature
• Larger spont curvature leads to smaller radius Rs

• Several experimental systems with  Rs ~ 100 nm
• Membrane nanotubes
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Topology of Surfaces 
• Closed surface with F faces, E edges, and V vertices

35Reinhard Lipowsky, MPI-CI ASC, 18 January 2023

• Euler characteristic  c = F – E + V
• For tetrahedron, cube, ..., and sphere: c = 2
• Euler characteristic is topological invariant
• Euler characteristic is additive:  c  = 2 + 2 = 4 for two spheres

tetrahedron     cube      icosahedron                                                   sphere



Topology of Multispheres
• All multispheres have the same topology as a single  sphere !

36Reinhard Lipowsky, MPI-CI ASC, 18 January 2023

All multispheres 
have the same 
Euler characteristic
     c = 2



Remodeling of Membrane Topology
• Two surfaces have the same topology iff they can be
   smoothly transformed into each other without rupture
• Topological classification via Euler characteristic c  :

37Reinhard Lipowsky, MPI-CI ASC, 18 January 2023

• Topological transformation  ó  change  Dc = cfin  -  cini 
• Fission: Euler characteristic Dc > 0
• Fusion:  Euler characteristic Dc < 0

c =  0                                 c =  2                                  c =  4      

Fission

Fusion

Fission

Fusion



Fission of Membrane Necks

• Membrane fission implies disrupture/cleavage of membrane
• Work of cleavage proportional to length of cut
• Shortest possible cut for dumbbell across membrane neck:

38Reinhard Lipowsky, MPI-CI ASC, 18 January 2023

Dumbbell      Broken neck     Two spheres



Free Energy Landscape
• Free energy difference D G21

• Free energy barrier D G21

• Fission process is ‚downhill‘ or 
   exergonic for negative D G21

• Free energy barrier determines 
  fission rate 

39Reinhard Lipowsky, MPI-CI ASC, 18 January 2023

• D G21 dominated by Gaussian curvature energy EG 
• Change in Gaussian curvature energy  DEG = 2 p Dc 𝜅𝐺 
  proportional to Gaussian curvature modulus 𝜅𝐺 
• Fission is ‚downhill‘ for negative 𝜅𝐺 



Fine Tuning  of GUV Morphologies

• Binding of GFP to small mole fraction of  anchor NTA-lipids: 
Steinkühler et al,  Nature Comm. (2020)

• Dilute regime, no crowding !
• Nanomolar GFP concentration X as control parameter
• Density Γ of bound GFP  increases linearly with X
• Spont curvature m increases linearly with Γ ~ X

His-tagged GFP
NTA-lipids

40Reinhard Lipowsky, MPI-CI ASC, 18 January 2023

30 nmGFP GFP



Controlled Budding of GUVs
• Morphology determined by volume 
  and spont curvature (rescaled):
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• Volume via osmotic conditions
  Sp-curvature via GFP concentration 



Constriction Force from Spont Curvature

• Spont curvature m generates constriction 
   force f  acting radially on membrane neck: 

• Increase of m for fixed v
• Fixed shape of (1+1)-sphere
• Constriction force  f increases

42Reinhard Lipowsky, MPI-CI ASC, 18 January 2023

f = 8π κ ( m – Mne  ) 

5 µm

f

f

RL, Advances in Biomembranes and Lipid Selfassembly Vol. 30 (2019) Ch. 3 



Neck Fission and Division of GUVs

• Osmotic deflation + GFP binding
• Osmotic deflation: Spherical GUV -> dumbbell GUV
  Increase in GFP  -> Neck cleavage -> Two daughter GUVs 

Adsorption of
GFP onto GUV
membrane

Deflation leads to
dumbbell with
membrane neck

Directly after
neck cleavage 

Complete division
into two smaller 
GUVs

43

Steinkühler et al:  Nature Comm. (2020)
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Morphological Complexity of  ER
• Membrane-enclosed 
   organelle  
• Each eukaryotic cell
  contains only one ER
• Network of membrane
   nanotubes (yellow) 
• Tubes have a width 
   of ~ 80 nm
• Reticular network ~ 
  cell size ~ 80 µm 
• Meshsize of irregular
  polygons ~ 1 µm

• Network formed by a
  single membrane !

45Reinhard Lipowsky, MPI-CI 
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Reticular Networks, In Vivo

• Primarily three-way junctions, at which three tubules meet
• Irregular polygons with angles of 120o

46
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• Membrane nanotubes connected by junctions

10 µm
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Reticular Networks, In Vitro

• Left: Proteoliposomes with membrane GTPase
• Right: Network formation after addition of GTP
• No cytoskeletal components, only membranes ! 
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Junctions and Membrane Tension

• Likewise, a stationary four-way junction between four nanotubes would
  lead to contact angles of 90o

48Reinhard Lipowsky, MPI-CI 

• Prevalence of three-way junctions observed in vivo since the 1980s
• But no explanation in the available ER literature

• Each three-way junction formed by three fluid nanotubes
• Force balance at a stationary three-way junction implies that all tubes 
  experience the same membrane tension and form contact angles of 120o :
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RL, Adv. Colloid Interface Sci. (2022)
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Prevalence of Three-Way Junctions
• However, the total tube length can be reduced by transforming the 
  four-way junction into two three-way junctions

49Reinhard Lipowsky, MPI-CI 

• Network of two three-way junctions represents a simple example of a
  Steiner minimal tree as studied in mathematical graph theory

• Conclusion: Significant membrane tension favors three-way junctions

• But how is this tension generated? 

This transformation is 
possible because the
ER membrane is fluid

ASC, 18 January 2023



Images of Three-Way Junctions

• Time lapse movie:

• Closure and opening
  of membrane necks, 
  blue arrow-heads

50Reinhard Lipowsky, MPI-CI 

• Single junction ~ 
  fluctuating triunduloid !

ASC, 18 January 2023

Holcman et al, Nature Cell Biology (2018)
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