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Intracellular  Membranes and Vesicles

• Each cell of our body contains many membrane compartments
• Membrane fusion and fission change number  of compartments
• Challenge for synthetic biosystems !
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Membrane Morphology of 
Endoplasmic Reticulum (ER)

ER in healthy cells:
Network of membrane
nanotubes and three-way
junctions
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ER membrane in sick cells, remodeling by
(a) Dengue virus; (b) Hepatitis C virus:
(a) In-budded vesicles (Ve) and (b) out-
budded double-membrane vesicles (DMV)

Obara et al , Cold Spring (2023) Romero-Brey et al, Viruses (2014)
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Basic Aspects I:  Lipid Bilayers
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• Universal building block of all biomembranes

• Each bilayer consists of two leaflets:

• Asymmetries can arise from different lipid composition or
different lipid densities or different aqueous solutions adjacent to
the two leaflets …

• Asymmetric densities imply distinct leaflet tensions

• On the nanoscale, bilayer asymmetry implies spontaneous curvature

• Symmetric bilayers with two identical leaflets

• Asymmetric bilayers with two different leaflets



Bilayer Asymmetry and Spont Curvature

• Spontaneous or preferred curvature m describes
(trans)bilayer asymmetry =  asymmetry between two leaflets

• Different molecular mechanisms for bilayer asymmetry:

Asymmetric
composition,
e.g., ganglioside

Asymmetric
adsorption of
small molecules

Asymmetric binding
of proteins, 
dilute coverage

GFPGFP
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Basic Aspects II: Fluidity

• Molecular scale: Fast lateral diffusion
of all molecular components
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4 nm

• Remodeling of lipid composition:
demixing and membrane domains

• Remodeling of membrane shape:
sphere into dumbbell, two spheres
connected by membrane neck

• Fluidity leads to pattern formation in/by membranes

• Pattern formation traditionally called “remodeling“



Remodeling of Membrane Topology
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• Remodeling of membrane topology via fission and fusion

• Fission transforms one membrane compartment into two:

• Fusion transforms two membrane compartments into one:

0 µs 4 µs 8 µs 12 µs

0 µs 0.2 µs 0.3 µs 0.5 µs

Ghosh et al , 
Nature Commun
(2023)

Lipowsky et al , 
Biomolecules
(2023)



Assembly of Bilayers and Nanovesicles
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• Assembly of lipids into two leaflets

• Coarse-grained lipids, in-silico assembly

• Leaflet 1 assembled from N1 lipids

• Leaflet 2 assembled from N2 lipids

headgroup

Reinhard Lipowsky, MPI-CI

20 nm
• Lipid numbers N1 and N2 are simple assembly 
   parameters, easy to control in the simulations



From Lipid Numbers to Leaflet Tensions

• Different lipid numbers N1 and N2 
          generate different leaflet tensions S1 and S2
• Bilayer tension

10

Bartosz Rozycki and Lipowsky, J. Chem. Phus. (2015)   
Lipowsky, Rikhia Ghosh et al, Biomolecules (2023)
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• Each leaflet tension can be positive or negative, 
   corresponding to a stretched or compressed leaflet

S = S1 + S2

• Stress asymmetry between leaflets, DS = S2 – S1

• Stress asymmetry DS provides important control parameter
• All remodeling processes at the nanoscale controlled by DS

Reinhard Lipowsky, MPI-CI
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Out-Budding of Giant Vesicles

• Pear-like vesicle transformed into two-sphere vesicle
• Snapshots from time lapse over 16 s: 
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Tripta Bhatia et al, Soft Matter (2020)

• Membrane exposed to asymmetric sucrose/glucose solutions
• Membrane forms two spheres connected by a single neck
• (1+1)-sphere consisting of one large and one small sphere

Scale bar: 5 µm 



Stability of Two-Sphere Shapes
• Morphology diagram defined by two parameters:
  volume-to-area ratio v and spontaneous curvature m
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Lipowsky, Giant Vesicle
Book (2019)

• Stability regime is subregion
  of morphology diagram

• Bounded by two lines of 
  limit shapes L1+1 and L2*
• Two-sphere shapes independent
   of spontaneous curvature m

• But, for larger m,  membrane
  neck compressed by larger
  constriction force

f = 8π κ ( m – Mne )



Fine-Tuning of Spontaneous Curvature
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• Vesicles exposed to His-tagged GFP in  exterior solution
• GFP binds to anchor lipids in the vesicle membrane
• Fine-tuning of spontaneous curvature by membrane-bound GFP
• High curvature from low densities of membrane-bound GFP: 

Jan Steinkühler et al,  Nature Commun (2020) 

30 nmGFP GFP
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Morphology Diagram, Experiment
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Jan Steinkühler et al,  Nature Commun (2020) 
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• Vesicle volume v changed by osmotic inflation/deflation
• Spontaneous curvature m controlled by GFP concentration
• Morphology diagram: 

spontaneous curvature m
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Fission and Division of GUVs
• Osmotic deflation + GFP binding
• Osmotic deflation: Spherical GUV -> dumbbell GUV

Increase in GFP  -> Neck cleavage -> Two daughter GUVs 

Adsorption of
GFP onto GUV
membrane

Deflation leads to
dumbbell with
membrane neck

Directly after
neck cleavage 

Complete division
into two smaller 
GUVs
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Jan Steinkühler et al:  Nature Commun. (2020)
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Active Shape Oscillations of Giant Vesicles
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Simon Christ et al, Soft Matter (2021)
• Min proteins D and E  in interior solution
• MinD/E binds to membrane and unbinds via ATP hydrolysis
• Cyclic closure and opening of membrane neck: 

Symmetric  (blue)        Asymmetric (red)
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Multispherical Shapes of Giant Vesicles

18

Tripta Bhatia et al, 
Soft Matter (2020)

• All spheres connected by membrane necks
• All small spheres have the same radius
• Likewise: all large spheres have the same radius

16 October 2024 Reinhard Lipowsky, MPI-CI

• (1+1)-spheres are the simplest multispheres
• Multispheres consisting of small and large spheres:

• Multispheres 
   with out-buds

Scale bars: 
10 µm 

Scale bar: 
5 µm • Multispheres 

  with in-buds
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Giant Vesicles and Condensate Droplets 
• Liquid-liquid phase separation

in exterior solution: 
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• Liquid-liquid phase separation
in interior solution: 

Liquid-liquid (ab) interface pulls at the membrane by
capillary forces, thereby generating membrane "kinks“



Condensates and Interfacial Tension

• Condensates in aqueous solution of PEG and dextran
• Segregative phase separation into PEG-rich and dextran-rich phase
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Yonggang Liu et al, Langmuir (2012)

• Phase diagram: • Interfacial tension: 



Droplet Engulfment versus Tubulation
• Two competing remodeling processes:
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Interfacial tension large compared
to curvature-elastic tension, 2km2

a                                                                                                    b

5 μm 5 μm

Lipowsky, Giant Vesicle
Book (2019)

• Complete engulfment of
condensate droplet:

• Tubulation of membrane segment
in contact with PEG-rich phase: 

Curvature-elastic tension large compared
to interfacial tension

Yonggang Liu et al, ACS Nano (2016)Yanhong Li et al, JPC B (2012)



Tubular Patterns and Wetting

• Membrane segment exposed to PEG-rich phase forms 
  many nanotubes with a diameter of about 100 nm
• Different patterns of nanotubes: 

Yonggang Liu et al,  ACS Nano 10 (2016) 
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Tubes immersed in PEG-
rich phase if membrane is 
completely wetted (CWet) 

Tubes adhere to liquid-liquid 
interface if membrane is 
partially wetted (Pwet)



From Tubes to Sheets and Back

• PWet: many nanotubes adhering to PEG-dextran interface
• Transformation between tubes and sheets:  
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Tube transformed into sheet           Sheet transformed into tube

Ziliang Zhao et al, PNAS (2024)



Morphological Complexity of  ER
• Membrane-enclosed

organelle
• Each eukaryotic cell

contains only one ER
• Network of membrane

nanotubes (yellow) 
• Tubes have a width 

of ~ 80 nm
• Reticular network ~ 

cell size ~ 80 µm 
• Meshsize of irregular

polygons ~ 1 µm
• Network formed by a

single membrane !
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Networks with Three-Way Junctions
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• Three-way junctions provide 
link between three nanotubes 

• Observed for a long time

• But unknown mechanism

three-way

Lipowsky, Shreya Pramanik et al, ACS Nano (2023)

four-way
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• Force balance at junction
• Proposed mechanism based

on membrane tension
• Favors Transformation of four-

way into three-way junction

10 µm
in vivo example: Lippincott-Schwartz lab
in vitro example: Rapoport lab

in vivo                      in vitro



Shape of Three-Way Junctions
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• Time-lapse of mesh with 5 junctions:
• Nanotubes undergo peristaltic modes
• Membrane necks close and reopen

Lipowsky, Shreya Pramanik et al, ACS Nano (2023)

16 October 2024 Reinhard Lipowsky, MPI-CI

• Junctions resemble triunduloids:
• Closed neck => neck fission
• Membrane tension prevents

necks from closing and 
nanotubes from fragmentation

Holcman et al, Nat. Cell Biol. (2018)

Große-Braukmann et al, Visualization (1997)



Coworkers

Tripta
Bhatia

Jan
Steinkühler

Rumiana
Dimova

Rikhia
Ghosh

Vahid
Satarifard

Andrea
Grafmüller

Simon
Christ

Ziliang
Zhao

Reinhard Lipowsky, MPI-CI 28

Fruitful collaborations with
Seraphine Wegner, Petra Schwille, and Joachim Spatz
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Polymorphism of Nanovesicles

• Changes of vesicle volume by osmotic deflation and inflation
• Spherical vesicles with different stress assymmetry DS = Sol - Sil  
• Reduction of  volume v leads to distinct nonspherical shapes:
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Positive DS: Outer leaflet 
stretched, Inner leaflet 
compressed => In-Bud

Negative DS: Outer leaflet 
compressed, Inner leaflet 
stretched =>  Out-Bud

In-Budding

Out-Budding

Rikhia Ghosh et al, Nano Letters (2019)



Multipheres of Equally Sized Spheres

• Surprising mobility: linear ó branched chains

• Multispheres consisting of N* equally sized spheres: 
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N* = 14
branched 

N* = 15
branched 

N* = 39
branched 

N* = 15
branched 

N* = 24
linear 

Tripta Bhatia et al,  Soft Matter (2020)
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