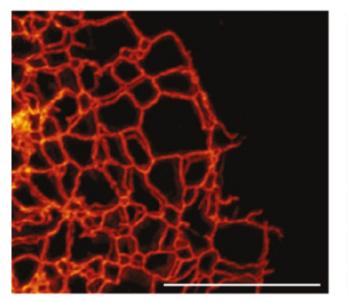
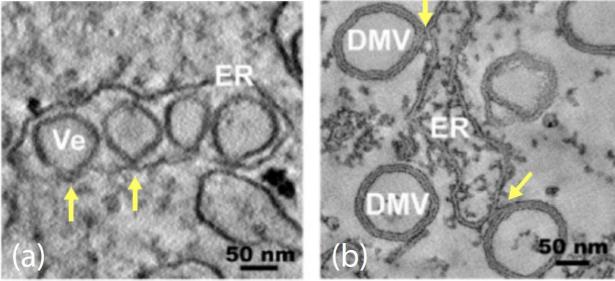

The Fluid Architecture of Biomembranes and Vesicles

Reinhard Lipowsky MPI of Colloids and Interfaces, Potsdam, Germany

- Challenge of (Intra)Cellular Membranes
- Basic Aspects of Biomembranes
- Membrane Remodeling at the Nanoscale
- Membrane Remodeling at the Micron-Scale
- Giant Vesicles and Condensate Droplets
- Short Outlook on Endoplasmic Reticulum

Intracellular Membranes and Vesicles




- Each cell of our body contains many membrane compartments
- Membrane fusion and fission change number of compartments
- Challenge for synthetic biosystems !

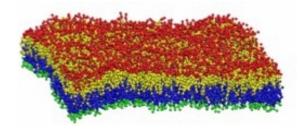
Membrane Morphology of Endoplasmic Reticulum (ER)

Obara et al, Cold Spring (2023)

Romero-Brey et al, Viruses (2014)

ER in healthy cells:

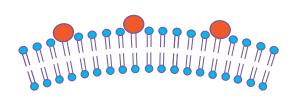
Network of membrane nanotubes and three-way junctions ER membrane in sick cells, remodeling by (a) Dengue virus; (b) Hepatitis C virus:


(a) In-budded vesicles (Ve) and (b) outbudded double-membrane vesicles (DMV)

16 October 2024

- Challenge of (Intra)Cellular Membranes
- Basic Aspects of Biomembranes
- Membrane Remodeling at the Nanoscale
- Membrane Remodeling at the Micron-Scale
- Giant Vesicles and Condensate Droplets
- Short Outlook on Endoplasmic Reticulum

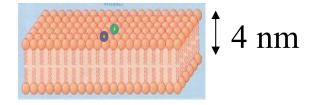
Basic Aspects I: Lipid Bilayers


- Universal building block of all biomembranes
- Each bilayer consists of two leaflets:
- Symmetric bilayers with two identical leaflets

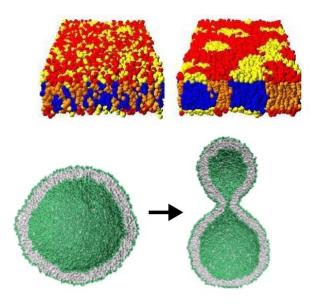
- Asymmetric bilayers with two different leaflets
- Asymmetries can arise from different lipid composition or different lipid densities or different aqueous solutions adjacent to the two leaflets ...
- Asymmetric densities imply distinct leaflet tensions
- On the nanoscale, bilayer asymmetry implies spontaneous curvature

Bilayer Asymmetry and Spont Curvature

- Spontaneous or preferred curvature *m* describes (trans)bilayer asymmetry = asymmetry between two leaflets
- Different molecular mechanisms for bilayer asymmetry:

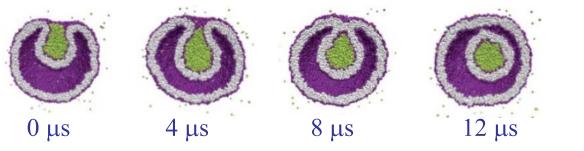

Asymmetric composition, e.g., ganglioside Asymmetric adsorption of small molecules Asymmetric binding of proteins, dilute coverage

GFP

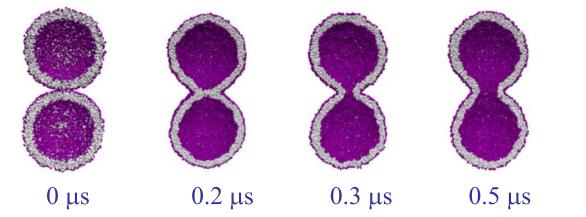

GFP

Basic Aspects II: Fluidity

• Molecular scale: Fast lateral diffusion of all molecular components

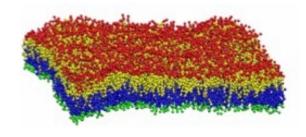


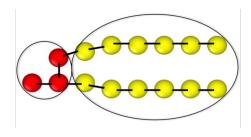
- Fluidity leads to pattern formation in/by membranes
- Pattern formation traditionally called "remodeling"
- Remodeling of lipid composition: demixing and membrane domains
- Remodeling of membrane shape: sphere into dumbbell, two spheres connected by membrane neck

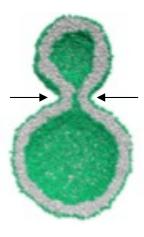

Remodeling of Membrane Topology

- Remodeling of membrane topology via fission and fusion
- Fission transforms one membrane compartment into two:

Ghosh et al , *Nature Commun* (2023)


• Fusion transforms two membrane compartments into one:




Lipowsky et al , *Biomolecules* (2023)

Assembly of Bilayers and Nanovesicles

- Assembly of lipids into two leaflets
- Coarse-grained lipids, in-silico assembly
- Leaflet 1 assembled from N_1 lipids
- Leaflet 2 assembled from N_2 lipids

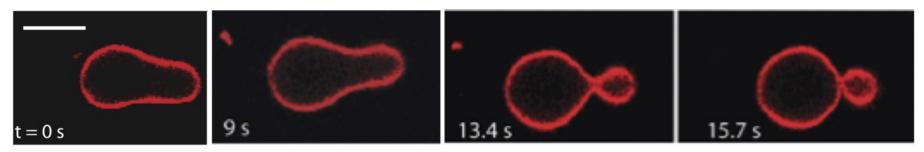
• Lipid numbers N_1 and N_2 are simple assembly parameters, easy to control in the simulations

From Lipid Numbers to Leaflet Tensions

Bartosz Rozycki and Lipowsky, *J. Chem. Phus.* (2015) Lipowsky, Rikhia Ghosh et al, *Biomolecules* (2023)

• Different lipid numbers N_1 and N_2

generate different leaflet tensions Σ_1 and Σ_2


- Bilayer tension $\Sigma = \Sigma_1 + \Sigma_2$
- Each leaflet tension can be positive or negative, corresponding to a stretched or compressed leaflet
- Stress asymmetry between leaflets, $\Delta \Sigma = \Sigma_2 \Sigma_1$
- Stress asymmetry $\Delta\Sigma$ provides important control parameter
- All remodeling processes at the nanoscale controlled by $\Delta\Sigma$

- Challenge of (Intra)Cellular Membranes
- Basic Aspects of Biomembranes
- Membrane Remodeling at the Nanoscale
- Membrane Remodeling at the Micron-Scale
- Giant Vesicles and Condensate Droplets
- Short Outlook on Endoplasmic Reticulum

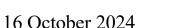
Out-Budding of Giant Vesicles

Tripta Bhatia et al, Soft Matter (2020)

- Pear-like vesicle transformed into two-sphere vesicle
- Snapshots from time lapse over 16 s:

Scale bar: 5 µm

- Membrane exposed to asymmetric sucrose/glucose solutions
- Membrane forms two spheres connected by a single neck
- (1+1)-sphere consisting of one large and one small sphere

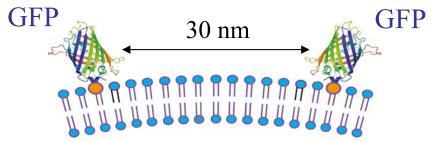

Stability of Two-Sphere Shapes

• Morphology diagram defined by two parameters: volume-to-area ratio *v* and spontaneous curvature *m*

Lipowsky, *Giant Vesicle Book* (2019)

- Stability regime is subregion of morphology diagram
- Bounded by two lines of limit shapes L_{1+1} and L_{2*}
- Two-sphere shapes independent of spontaneous curvature *m*
- But, for larger *m*, membrane neck compressed by larger constriction force

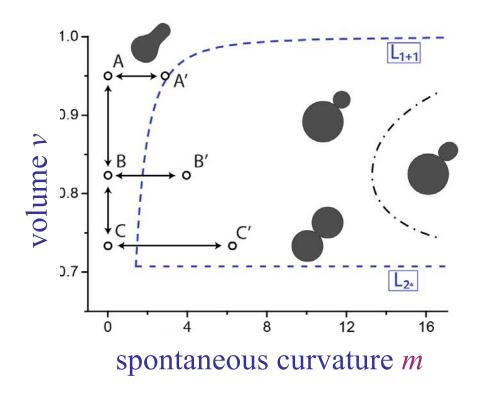
$$f = 8\pi \kappa (m - M_{\rm ne})$$

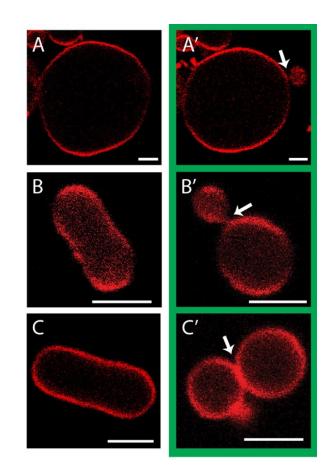


0.9 0.9 0.8 0.7 L_{2*}^{pos} 1 3 5 7 9 11 positive spontaneous curvature \overline{m}

Fine-Tuning of Spontaneous Curvature

Jan Steinkühler et al, Nature Commun (2020)


- Vesicles exposed to His-tagged GFP in exterior solution
- GFP binds to anchor lipids in the vesicle membrane
- Fine-tuning of spontaneous curvature by membrane-bound GFP
- High curvature from low densities of membrane-bound GFP:



Morphology Diagram, Experiment

Jan Steinkühler et al, Nature Commun (2020)

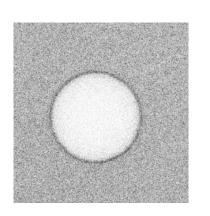
- Vesicle volume *v* changed by osmotic inflation/deflation
- Spontaneous curvature *m* controlled by GFP concentration
- Morphology diagram:

Fission and Division of GUVs

07:27

+GFP-HIS

Jan Steinkühler et al: Nature Commun. (2020)

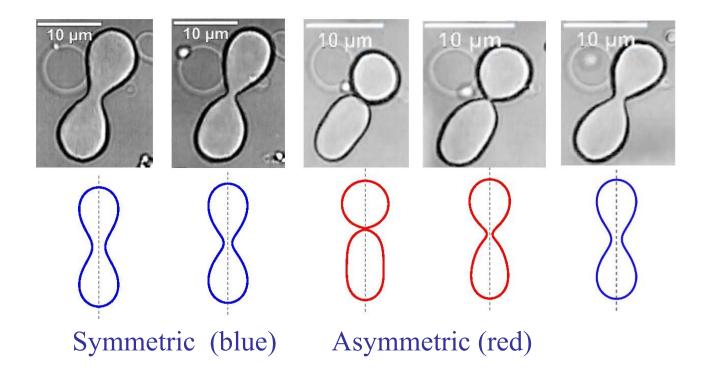

07:41

+GFP-HIS

• Osmotic deflation + GFP binding

01:09

- Osmotic deflation: Spherical GUV -> dumbbell GUV
 - Increase in GFP -> Neck cleavage -> Two daughter GUVs


Adsorption of GFP onto GUV membrane

Deflation leads to dumbbell with membrane neck Directly after neck cleavage Complete division into two smaller GUVs

Active Shape Oscillations of Giant Vesicles

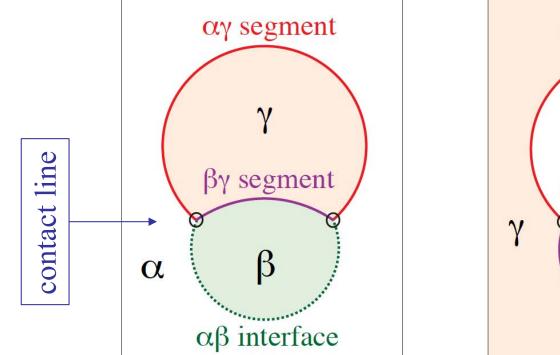
Simon Christ et al, Soft Matter (2021)

- Min proteins D and E in interior solution
- MinD/E binds to membrane and unbinds via ATP hydrolysis
- Cyclic closure and opening of membrane neck:

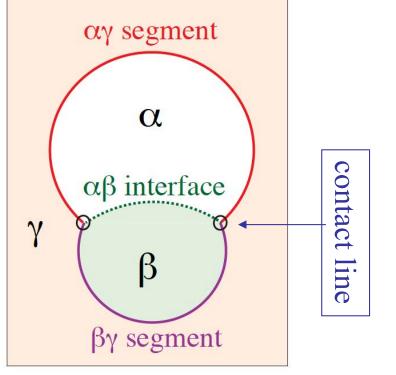
Multispherical Shapes of Giant Vesicles

- (1+1)-spheres are the simplest multispheres
- Multispheres consisting of small and large spheres:
- Multispheres with out-buds
- Multispheres with in-buds

Tripta Bhatia et al.


Soft Matter (2020)

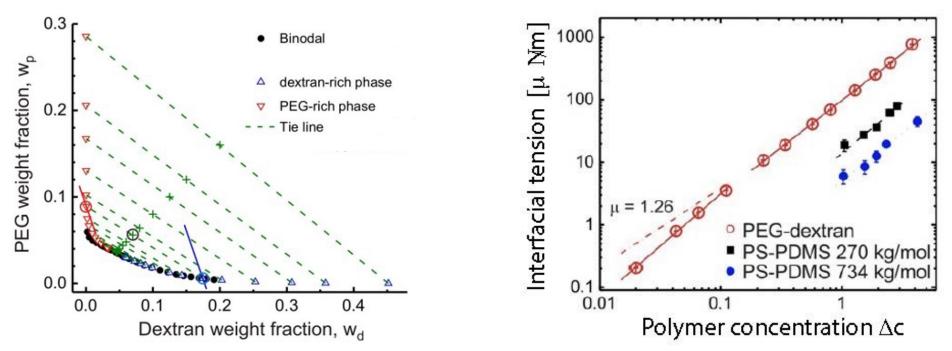
- All spheres connected by membrane necks
- All small spheres have the same radius
- Likewise: all large spheres have the same radius


- Challenge of (Intra)Cellular Membranes
- Basic Aspects of Biomembranes
- Membrane Remodeling at the Nanoscale
- Membrane Remodeling at the Micron-Scale
- Giant Vesicles and Condensate Droplets
- Short Outlook on Endoplasmic Reticulum

Giant Vesicles and Condensate Droplets

• Liquid-liquid phase separation in exterior solution:

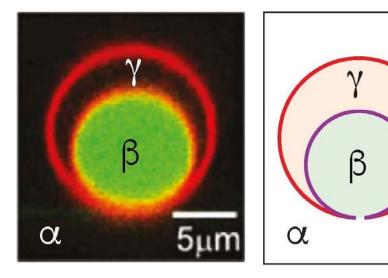
• Liquid-liquid phase separation in interior solution:


Liquid-liquid ($\alpha\beta$) interface pulls at the membrane by capillary forces, thereby generating membrane "kinks"

Lipowsky, Membranes (2023)

Condensates and Interfacial Tension

Yonggang Liu et al, Langmuir (2012)


- Condensates in aqueous solution of PEG and dextran
- Segregative phase separation into PEG-rich and dextran-rich phase
- Phase diagram:

• Interfacial tension:

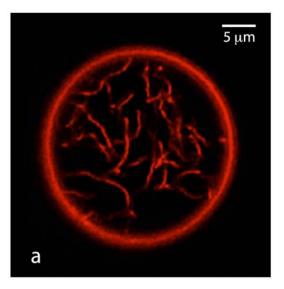
Droplet Engulfment versus Tubulation


- Two competing remodeling processes:
- Complete engulfment of condensate droplet:

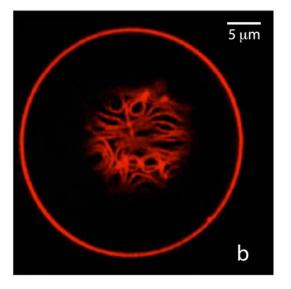
Yanhong Li et al, JPC B (2012)

Interfacial tension large compared to curvature-elastic tension, $2\kappa m^2$

• Tubulation of membrane segment in contact with PEG-rich phase:


Yonggang Liu et al, ACS Nano (2016)

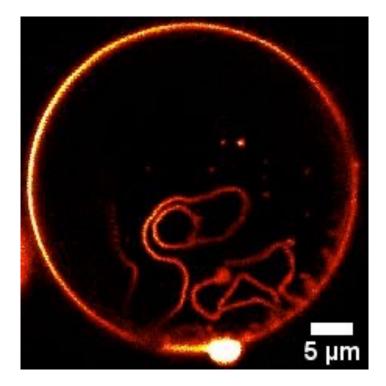
Curvature-elastic tension large compared to interfacial tension Lipowsky, *Giant Vesicle Book* (2019)


Tubular Patterns and Wetting

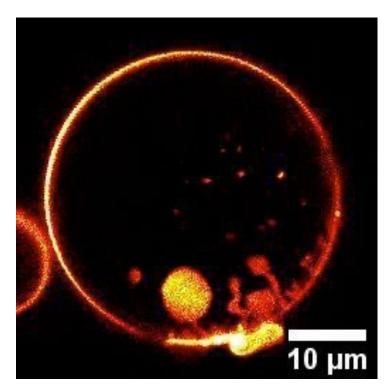
Yonggang Liu et al, ACS Nano 10 (2016)

- Membrane segment exposed to PEG-rich phase forms many nanotubes with a diameter of about 100 nm
- Different patterns of nanotubes:

Tubes immersed in PEGrich phase if membrane is completely wetted (CWet)

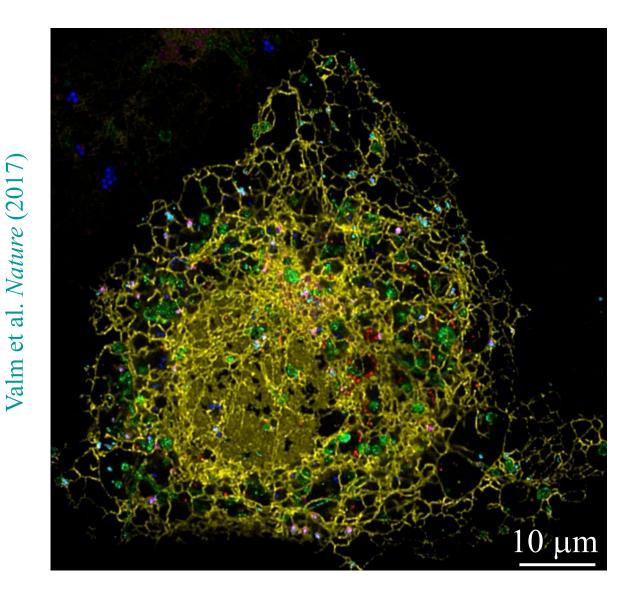


Tubes adhere to liquid-liquid interface if membrane is partially wetted (Pwet)


From Tubes to Sheets and Back

Ziliang Zhao et al, PNAS (2024)

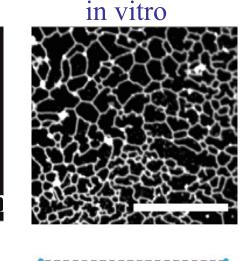
- PWet: many nanotubes adhering to PEG-dextran interface
- Transformation between tubes and sheets:

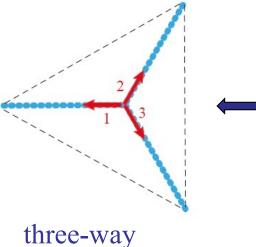


Tube transformed into sheet

Sheet transformed into tube

Morphological Complexity of ER

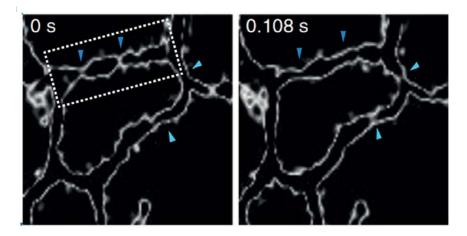

- Membrane-enclosed organelle
- Each eukaryotic cell contains only one ER
- Network of membrane nanotubes (yellow)
- Tubes have a width of ~ 80 nm
- Reticular network ~ cell size ~ 80 μm
- Meshsize of irregular polygons ~ 1 μm
- Network formed by a single membrane !


Networks with Three-Way Junctions

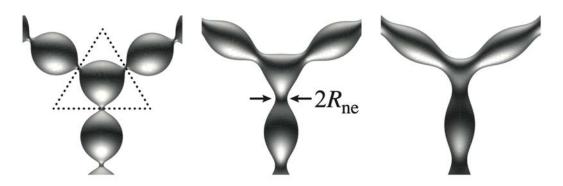
Lipowsky, Shreya Pramanik et al, ACS Nano (2023)

- Three-way junctions provide link between three nanotubes
- Observed for a long time in vivo example: Lippincott-Schwartz lab in vitro example: Rapoport lab
- But unknown mechanism
- Force balance at junction
- Proposed mechanism based on membrane tension
- Favors Transformation of fourway into three-way junction

in vivo


Shape of Three-Way Junctions

Lipowsky, Shreya Pramanik et al, ACS Nano (2023)


- Time-lapse of mesh with 5 junctions:
- Nanotubes undergo peristaltic modes
- Membrane necks close and reopen

- Closed neck => neck fission
- Membrane tension prevents necks from closing and nanotubes from fragmentation

Holcman et al, Nat. Cell Biol. (2018)

Große-Braukmann et al, Visualization (1997)

Coworkers

Experiments, Micron-Scale

Dimova

Tripta Bhatia

Jan Steinkühler

Ziliang Zhao

Agustin Mangiarotti

Shreya Pramanik

Simon Christ

Andrea H Grafmüller H

Markus Miettinen

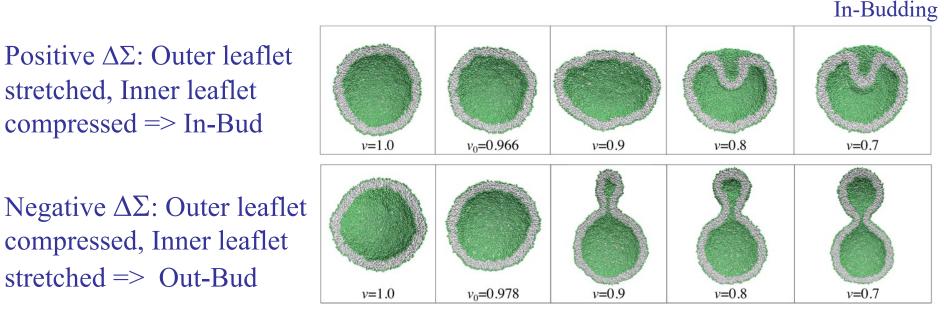
Rikhia Ghosh

Vahid Satarifard

Aparna Mif

Aparna Miftakh Sreekumari Zamaletdinov

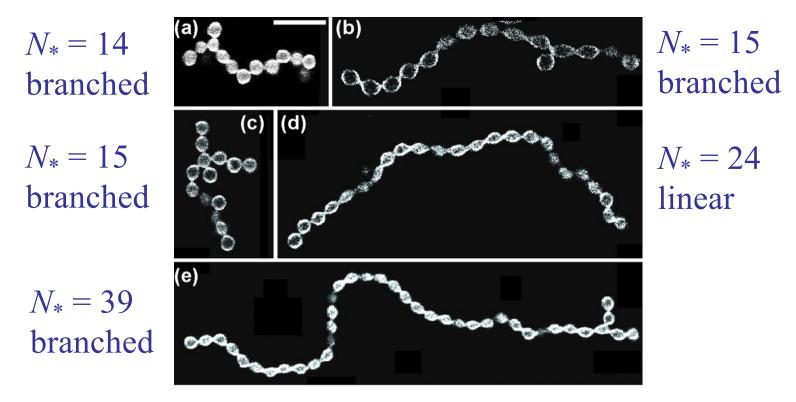
Fruitful collaborations with


Seraphine Wegner, Petra Schwille, and Joachim Spatz

Polymorphism of Nanovesicles

Rikhia Ghosh et al, Nano Letters (2019)

- Changes of vesicle volume by osmotic deflation and inflation
- Spherical vesicles with different stress asymmetry $\Delta \Sigma = \Sigma_{ol} \Sigma_{ll}$
- Reduction of volume v leads to distinct nonspherical shapes:



Out-Budding

Multipheres of Equally Sized Spheres

Tripta Bhatia et al, Soft Matter (2020)

• Multispheres consisting of *N*^{*} equally sized spheres:

• Surprising mobility: linear \Leftrightarrow branched chains