The Many Faces of Membrane Tension for Biomembranes and Vesicles

Reinhard Lipowsky MPI of Colloids and Interfaces, Potsdam, Germany

London, 24 April 2025

Ubiquity of Membrane Tension

Vesicle preparation
 Osmotic in/deflation

• Adhesion

Reinhard Lipowsky, MPI-CI

• Micropipette aspiration

London, 24 April 2025

• Condensate droplets

Membrane Tension ⇔ Membrane Area

• Common feature in all examples:

Membrane subject to external forces or constraints that affect the membrane's surface area

• Difficulty:

Area changes are necessarily small because the membrane ruptures for area changes of a few percent

 Tension for three biomimetic model membranes: Planar lipid bilayers, unilamellar nanovesicles, and giant unilamellar vesicles (GUVs)

Planar Lipid Bilayers

Rozycki and Lipowsky, *J. Chem. Phys*, 2015 = Ref 6 Lipowsky et al, *Biomolecules*, 2023 = Ref 1

- Upper leaflet with $N_{\rm ul}$ lipids and leaflet tension $\Sigma_{\rm ul}$
- Lower leaflet with $N_{\rm ll}$ lipids and leaflet tension $\Sigma_{\rm ll}$
- Bilayer tension $\Sigma_{bil} = \Sigma_{ul} + \Sigma_{ll}$

- Each leaflet can be compressed, tensionless, or stretched ⇔ Each leaflet tension can be negative, zero, or positive
- Reference state with tensionless leaflets, $\Sigma_{ul} = \Sigma_{ll} = 0$
- Tensionless leaflets imply tensionless bilayer. In contrast, a tensionless bilayer does **not** imply tensionless leaflets but only opposite leaflet tensions, $\Sigma_{ll} = -\Sigma_{ul}$

Leaflet Tensions of Bilayers

• Elastic states of lower leaflet (LL) and upper leaflet (UL):

- Analogous elastic states for two leaflets of nanovesicles
- Main difference: Reference state more difficult to find

Reinhard Lipowsky, MPI-CI

Fluctuation Tension

Goetz et al, *Phys Rev Lett*, 1999 = Ref 14

- Excess area stored in shape fluctuations
- \bullet Membrane with bending rigidity κ
- Bending modes with wavenumber q
- Fluctuation spectrum

$$S(q) = \frac{\kappa_{BT}}{\Sigma_{fl}q^2 + \kappa q^4}$$
Fluctuation 1

 $b_{\rm T}T$

Fluctuation tension Σ_{fl}

- Bilayer tension $\Sigma_{\text{bil}} = 0$ implies fluct tension $\Sigma_{\text{fl}} = 0$
- Latest simulation study provides evidence for $\Sigma_{fl} = \Sigma_{bil}$

Shiba et al, *Soft Matter*, 2016 = Ref 29

Giant Unilamellar Vesicles (GUVs)

- Spontaneous curvature model Helfrich, Z. Naturforsch. 1973 = ESI Ref 1
- Applies to membranes with cholesterol !

Steinkühler et al, *Nature Commun*, 2020 = Ref 40 Bhatia et al, *Soft Matter*, 2020 = Ref 41

- Local shape equation $\Delta P = 2 \Sigma_{tot} M + \dots$
- Total membrane tension $\Sigma_{tot} = \Sigma + 2\kappa m^2$
- Mechanical membrane tension Σ and curvature-elastic tension $2\kappa m^2$
- Both tensions have observable consequences

Vesicles and Condensate Droplets

- Cond droplets enclosed by liquid-liquid interface between two liquid phases α and β , third liquid phase γ
- Interface between α and β has interfacial tension $\Sigma_{\alpha\beta}$
 - Lipowsky, JPC B, 2018 = Ref 69

• Complete engulfment:

• Interfacial tension large compared to curv-elastic tensions

• Membrane nanotubes:

• Interfacial tension small compared to curv-elastic tensions

Membrane Tension *≠* Interfacial Tension

• In the literature, frequent analogies between mechanical membrane tension Σ and interfacial tension Σ_{int} but

Fundamentally different properties of Σ and Σ_{int} :

- Positive interfacial tension $\Sigma_{int} > 0$ in contrast to Σ
- Mech membrane tension Σ depends on vesicle size and shape in contrast to interfacial tension Σ_{int}
- Different scaling properties of shape fluctuations
- Mechanical and thermodynamic (Gibbs) route to Σ_{int} but No meaningful thermodynamic (Gibbs) route to Σ !
 - For $\Sigma \leq 0$, crumpled states for sufficiently large membranes
 - For $\Sigma > 0$, pore formation for sufficiently large membranes