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A non Eulerian framework for a renormalized theory of isotropic homogeneous steady 
state turbulence at high Reynold's numbers is developed. By construction it is invariant 
under random Galilei transformations. A direct interaction factorization is free of 
infrared singularities and yields Kolmogorov scaling for the static as well as for the 
dynamic correlation a n d  response functions. 

1. Introduction 

Renormalized perturbation expansions have turned 
out to be most valuable in many fields of physics. In 
a statistical theory of turbulence based on an Euler- 
ian description of the fluid and the Navier-Stokes 
equation the simplest nontrivial truncation leads to 
the direct interaction approximation (DIA) of Kraich- 
nan [2]. In contrast to an order by order expan- 
sion the renormalized expansion in this case leads to 
spurious effects for the energy transfer at small scales 
by convection at large scales [2]. A manifestation of 
this is the violation of Galilei invariance, and as a 
consequence the DIA gives an incorrect exponent for 
the energy spectrum in the inertial subrange. It is 
quite doubtful whether this deficiency can be cured 
by vertex renormalizations or similar means. 
A way out of this dilemma has been proposed again 
by Kraichnan [3, 4]. If the Eulerian framework is 
replaced by a generalized Lagrangian description, the 
theory can be made invariant under Galilei transfor- 
mations in each order of a renormalized expansion. 
The resulting DIA-equations are, however, quite in- 
volved and additional simplifications are necessary to 
bring them into a tractable form. The energy spec- 
trum obtained from such a Lagrangian version of the 
DIA shows Kolmogorov 41 scaling [5] in contrast to 
the Eulerian DIA. Corrections due to intermittency 
[6] are not contained in a DIA and the Lagrangian 
DIA therefore behaves as expected. 

In the present paper we propose an alternative non 
Eulerian framework which is Galilei invariant and 
free of the spurious effects due to convection at large 
scales typical for an Eulerian renormalized expan- 
sion. The DIA in this new picture yields Kolmogorov 
4l scaling like in the Lagrangian DIA. In contrast to 
this latter approach the equations are only slightly 
more complex than those of the Eulerian DIA. 
The situation to be studied is isotropic, homo- 
geneous, steady state turbulence driven by Gaussian 
correlated fluctuating forces. The spectrum of the 
forces is assumed to vanish outside a narrow band 
around some wavenumber Ko~Lo 1, where Lo plays 
the role of the external length scale. Furthermore, no 
white noise spectrum is assumed contrary to most 
investigations on steady state turbulence driven by 
random forces. This more general form appears to be 
required by the fact that the large scale motions, 
simulated by the fluctuating forces, are correlated 
over times much longer than the characteristic time- 
scales of the small scale motions which are investi- 
gated. This of course means that one has to abandon 
a Fokker-Planck description. Instead a path integral 
formulation of the Wyld-Martin-Siggia-Rose for- 
malisms [7] is used. 
In order to give some motivation for the following let 
us repeat some well-known heuristic arguments based 
on naive dimensional analysis. We focus on the time 
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dependent correlation function 

Cap(x-x' ,  t -  t') = (G(x, t) up(x', t')) (1.1) 

where G(x,t) are the cartesian components of the 
Eulerian velocity field. For isotropic turbulence its 
Fourier transform 

Cap (k, t) = y d d X Cap (X, t) exp ( -- i k. x) 

=P~p(k) C(k, t) (1.2) 

is the product of a scalar function C(k,t) and a 
transverse projection operator P~p(k) = cS~p - k a kp/k 2. 
The energy spectrum (in d dimensions) is 

d - 1  
E(k) - (4 ~)a/2 F(d/2) ka-1 C(k, 0). (1.3) 

For sufficiently high Reynold's numbers a power law 
behaviour of E(k) is expected for k in the inertial 
subrange, K o ~ k ~ K  a. 1/K a is the dissipation length. 
Eddies of this size are damped by viscosity. In the 
inertial subrange viscous damping is negligible and 
under the assumption that K o also plays no role [5] 
the energy spectrum has the well-known Kolmogorov 
form 

E(k) = c 82/3 k- s/3 (1.4) 

where e is the total energy dissipated per unite time 
and volume and c is Kolmogorov's constant. 
It is tempting to try the same naive dimensional 
analysis for the dynamic correlation function. Assum- 
ing 
C(k, t)= C(k, O)f(t/z(k)) (1.5) 

the resulting characteristic time is 

r(k)~8 i/3k 2/3. (1.6) 

This is certainly not correct even if intermittency 
corrections are neglected because of sweeping effects. 
This means that in a turbulent flow small scale 
structures are convected by the large scale flow. In 
order to make this more clear we assume that the 
velocity field is split into two parts 

u (x,  t) = v (x,  t) + fi (x  - y (t), t) (1 .7)  

where v(x,t) describes the large scale motions. It is 
supposed' to contain Fourier components out of the 
band K o < k < # only. fi(x - y (t), t) describes the small 
scale motion. The frame of reference is, however, not 
the Eulerian but rather a coordinate system advected 
with v(x, t). A crude estimate can now be given if the 
spacial dependence of v is neglected, 

t 

y(t) = ~d~ v(~) (1.8) 
0 

and if v(x, t) is replaced by an appropriate ensemble 
over v(t). This yields for the Fourier transform of the 
correlation function with k > # 

c(k,  t -  t') = ~ ~ {v(~)} ~(v(~)) 

• C(k, t -  t') exp [ - i k. {y(t)-  y(t')}] (1.9) 

where an average has been taken over the process 
v(z) with a weigth ~(v(z)). C(k,t) is the correlation 
function of ft. Assuming a Gaussian distribution and 
neglecting the time dependence of v(t) one finds 

C(k, t)= exp { - (v 2) k 2 t2/2 d} C(k, t). (1.10) 

Since v represents the large scale motions a reason- 
able choice is 

# 

@ 2 ) =  ~ dkE(k)~2c82/3{K02/3_#-2/3} .  (1.11) 
Ko 

Assuming that the characteristic time in C(k,t) is 
given by its naive dimensions, Eq.(1.6), the time 
dependence in C(k, t) is ruled by the first factor in 
(1.10) having a characteristic time, the sweeping time 

G(k) ~8-1/3 K~/3 k 1 (1.12) 

since zs(k)~r(k ) for k>> K o. 
This crude estimate demonstrates clearly the well- 
known fact that an Eulerian description is not suited 
as the basis of a theory of turbulence at high 
Reynold's numbers or, equivalently, in the limit cut- 
off Ko--*0, since the whole dynamics is dominated 
by sweeping effects• In any finite order of a re- 
normalized perturbation theory the intrinsic cutoff 
dependence of the dynamics appears to carry over 
into the statics and gives rise to incorrect exponents, 
for instance E(k)~ k-3/2 in the Eulerian DIA. 
In our present investigation we use (1.9) and its 
generalization to higher order correlation and re- 
sponse functions together with (1.8) as a definition of 
new non Eulerian velocity fields fi(x, t). Starting from 
the Eulerian equations of motion the theory is refor- 
mulated for the "randomly advected fields" fi(x,t). 
With an appropriate choice of the probability func- 
tional ~(v(z)) defining the transformation from u(x, t) 
to fi(x, t) the theory is free of the spurious sweeping 
effects and it is invariant under Galilei transfor- 
mations. A DIA yields Kolmogorov 41 scaling for 
the energy spectrum and the characteristic timescale 
in C(k, t) behaves as expected from naive dimensional 
analysis, Eq. (1.6). 
Galilei invariant DIA equations have been proposed 
recently by Kuznetsov and L'vov [8] using related 
arguments. Their scheme differs, however, in two 
essential points. We obtain their equations by choos- 
ing a time independent advecting field determined by 
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(1.11) with # ~ o e .  In order to find correlation and 
response functions which vanish for long times it 
appears, however, to be necessary to choose v(z) 
correlated over finite times and to choose # of the 
order of k. 
The present paper is organized as follows• In Sect. 2 a 
path integral formulation [7] of homogeneous iso- 
tropic steady state turbulence in an Eulerian descrip- 
tion is reviewed and the propagator renormalization 
and DIA are discussed. Section 3 deals with the trans- 
formation to the randomly advected field formulation 
and the DIA in this scheme is investigated in Sect. 4. 
The inertial range behaviour of this DIA is discussed 
in Sect. 5 and some conclusions are given in Sect. 6. 

2. Eulerian Framework 

We study the small scale motions of stationary iso- 
tropic non rotational homogeneous fully developed 
turbulence in an incompressible fluid. The steady 
state is maintained by external random forces. The 
forces replace the large scale motions, for instance the 
largest eddies created behind a grid. If the grid size is 
L o they have a typical wavenumber K o =  1 / L o  and 
accordingly the external forces should be chosen to 
have Fourier components only around this wave- 
number. The timescale for those eddies is 
~ e - i / 3 K o  2/3 and therefore much longer than the 
typical timescales for the small scale motions. The 
temporal behaviour of the fluctuating forces should 
be chosen accordingly• 
We are interested in averages over an ensemble of 
fluctuating forces assuming a Gaussian distribution 
with zero mean. The ensemble is then specified by the 
second moment of the forces f(x, t) 

<£(x,  t)f~ (x', t')> = P~e(V)~po (ix -x ' l ,  t - t ' ) .  (2.1) 

According to the above discussion the Fourier com- 
ponents of 70(x, t) have to vanish outside a region 
around the wavenumber K 0 and a frequency 
~2 0 ~ g l / 3  K2/3. 

The fluid is described by the Navier-Stokes equation 
for an incompressible fluid with the random forces 
added. A second external forces field q3(x,t) is in- 
troduced which serves later to define response func- 
tions. The resulting equation reads 

~, us (x, t) + ~ p.,(v) u~ (x, 0 ue (x, t) - v ~ u= (x, t) 

= L(x, t) + O~(x, t) (2.2) 

where v is the kinematic viscosity, P~e~(V)=P~(V)~ 
and a summation over repeated indices is implied. 

Following standard techniques a generating function- 
al 

G((p, q3) = (exp S dd X d t  q~(x, t) G(x, t)) (2.3) 

is defined. The average is taken over the ensemble of 
fluctuating forces and u(x, t) is considered as a func- 
tional o f f  and q~ and is a solution of (2.2). Actually u 
depends also on initial conditions at some t o which,  
become irrelevant in the limit t o - + -  ~ .  This func- 
tional generates correlation- and response functions 

G~'.:;)~,~,•,.¢~(x l , t l • . . x , ,  t ,  ; Y l , s l " - " Ym,  Sin) 

6 "  

a ~e l (Yl ,S0 . . -a  ~ , ( Y m ,  Sin) 
• <u~1(x~, q ) . . .  u~,(x,,t,)> 

am+" q3) ~=~.o" 
- 6  65~ (Y l, sl)... 6 qG, (x l, q ) . . .  G(cp, (2.4) 

Of special interest are the correlation function 

, _ (2,0) , G~,(x-x,t-t)-G¢ ( x , t , x ,Q  

= G 4 v )  C(lx-x ' l ,  t - t ' )  (2.5) 

and the response function 

R~(x  - y, t - s ) =  G~' l~(x, t; y, s) 

=P~(V) R(tx-Y[,  t - s ) .  (2.6) 

The representation of C~¢ and R ~  by scalar func- 
tions C and R is of course a consequence of the 
assumed isotropy and and absence of rotation [9]. 
The Navier-Stokes equation (2.2) and the definition 
(2.3) yield the following equation of motion 

= { - ~ , ( v )  a %(x, t) a ~ ( x ,  t) - v ~ 6 ~ ( x ,  t) 

+ G (  x, t) + S P~p(V) Y0(lx -Yl, t - s )  @~ (y, t)} G(q~, ~) 

(2.7) 

where the notation 8qG(x, t) = 8/6p~(x, t) is used and S 
denotes integration over repeated space and time 
variables. The last term in (2.7) originates from the 
f~(x, t) in (2.2) realizing that f is Gaussian distributed 
and that u depends on f+q~ only. 
A formal solution of the equation of motion (2.7) is 

G((p, $ ) =  exp {I S b (~(x, t) 3 c~a (x', t') 

• G(v) - / ( Ix -x ' l ,  t - t ' )  

- S aG(x,  t) a% (x', t') ~ ( v )  ,f(Ix - x '  I, t - t') 

- S aG(x,  0 ~e , ( r )  &oe(x, t) &%(x, t)} 
• exp {½ S (p~(x, t) (pp (x', t ' )  P~p ( v )  c(lx - x'l, t - t') 

+~o~(x,t)~(x',t')~e(v)~(Ix-x'l,t-t') }. (2,8) 
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This solution superficially depends on two arbitrary 
functions ~(x, t) and tl(x, t), where 

~'(x, t) = ~o(X, t ) -  ~(x, 0, 
t/'(x, t) = - v A 3 (x) 6(t) - t/(x, t). (2.9) 

The response propagator in (2.8) obeys 

O~/~(Ix -x ' l ,  t - t ' )  = - S q ( l x - y l ,  t - s ) /~ ( ly -x ' l ,  s - t ' )  
+ 5(x - x ' )  6 ( t -  t') (2.10) 

with causal boundary condition /~(x,t)=0 for t < 0  
implying t/(x,t)=0 for t<0 .  The correlation prop- 
agator is 

C(Ix -x ' l ,  t - t ' ) =  [/~(Ix-yl, t-s) 
• 7(]Y-Y'I, s-s')~q(I x'-Y'I, t'-s') .  (2.11) 

Actually G((p, qS) has to be independent on the arbi- 
trary functions y(x, t) and ~/(x, t) which is most easily 
seen if one shows that (2.8) is a solution of (2.7) for 7 
= t/= 0 and verifies that 5G((p, (9)/6 7 = 6G(q~, (o)/6t 1 = 0 
for any ? and t/. 
Propagator renormalization consists in choosing 7 
and t/ such that /~=R and C =  C and determining 
the counter terms involving 7' and r/' in (2.9) accord- 
ingly. Similar techniques can be employed in order to 
perform vertex renormalizations [7]. Such a renor- 
malization has actually been discussed in the context 
of an incompressible fluid stirred by fluctuating 
forces with a white noise spectrum acting at all wave- 
numbers [10], a problem not directly related to three- 
dimensional turbulent flow at high Reynold's num- 
bers. At present we investigate a propagator renor- 
realized expansion in the bare interaction represented 
by the third integral in the first exponent of (2.8). 
The DIA consists in retaining the first nontrivial 
contributions to the selfenergies y and t/ only. These 
are of second order in the interaction. The resulting 
expressions are 

t 

~(x, t) = ~o(X, t ) - ~ _ l  P~#V) 

• {P~(v)  + P~(v)}  cp~(x, t) c~(x ,  t), 
1 

~(x, t)= - v A 6(x) ~(t) - ~  {P~,(v) + P~,~ (v)} 

• C~(x,  t) {P~o~(V) + P~(V)} R~(x, t) (2.12) 

where P ~ ( V ) = d - 1  has been used. Equations(2.10- 
12) together with the definitions (2.5, 6) of the scalar 
parts form the well-known DIA equations. The cor- 
responding equations for the Fourier transforms are 

R(k, co) = ~ e x p ( -  i k .x +ico t) R(x, t) 

= {-- ico + t/(k, co)} -1 , 

C (k, co) = R (k, co) ~ (k, co) R* (k, co) (2.13) 

and 

v(k, t)--v0(k, t) 

+ k 2 ~ dp dq F(k, p, q) a(k, p, q) C(p, t) C(q, t), 
A 

~(k ,O=vk 2 

+k2~ dpdqF(k'p 'q)b(k 'p 'q)R(p' t)C(q' t)  (2.14) 
A 

The coefficients a(k,p,q) and b(k,p,q) arise from the 
Fourier transforms of the differential operators in 
(2•12) and (2•5,6) [1,11]. Since a(k,p,q)+a(k,q,p) 
=b(k,p,q)+b(k,q,p) the coefficient a(k,p,q) might be 
replaced by b(k,p,q) in (2•14)• In d-dimensions the 
latter can be written as 

k 1 k2+p2+q 2} 
b(k,p,q)=¼c(k,p,q) ~ d - 1  p2 , 

c(k, p, q) = (2k 2 p2 .+. 2k2 q2 + 2p2 q2 _ k4 _ p4 _ q4). 

(2.15) 

The d-dimensional integrations in momentum space 
have been converted into integrations over triangles. 
The boundaries of the remaining two-dimensional 
integrals are p + q > k > l p - q [  with p > 0  and q>0.  
The factor 

ka- 4 p q {c(k, p, q)}(a- 3)/2 
F(k, p, q) = 4d - 2 7c(e+ 1)/2 F((d - 1)/2) (2.16) 

originates from this transformation and the d - 2  
angular integrations. 
The origin of the spurious sweeping effects in the 
Eulerian DIA mentioned in the introduction can now 
easily be seen• The factor F(k, p, q)b(k, p, q) behaves as 
qe 2 in the limit q ~ 0 .  Assuming Kolmogorov scal- 
ing for C(q) for q > K  o and using K o as a lower 
cutoff, the integrals in (2•14) diverge as Ko 2/3 in the 
limit K o ~ O. The region p--* 0 is not dangerous since 
F(k, p, q) b(k, p, q) behaves as pd in this limit• 

3. Randomly Advected Field Formalisms 

The need for a reformulation of the theory in terms 
of non Eulerian velocities has been stated in the 
introduction. The present formulation is based on 
randomly advected fields• This means the statistical 
properties of the actual velocity field u(x, 0 are ex- 
pressed by the statistical properties of a velocity field 
fi(x, t) which is advected by a spacially constant but 
time dependent velocity field v(t) and averaged over a 
given distribution ~(v) of v(t). 
Let us define the generating functional d(~o, qS) for the 
response and correlation functions of the randomly 
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advected fields 

~({~o(x, t)}, {~(x, t)}) = ~ ~ {~(~)} ~(~) 

• G({cp (x + y(t), t)}, {~(x + y(t), t)}). (3.1) 

This definition implies (1.9). As stated in (1.8) 

t 

y(t) :~dzv(z) .  (3.2) 
o 

We assume that we can find the inverse of the above 
transformation. For a Gaussian ~(v) the explicit form 
is given later. Then 

d({~o (x, t)}, {~ (x, t)}) = j ~ {v (~)} ~ -  1(0 

-G({cp (x + y(t), t)}, {qS(x + y(t), t)}). (3.3) 

The original equation of motion (2.7) yields for 

~, ~ ~o~ (x, t) ~(~o, qs) = ~ ~ { ~ (~)} ~ - 1  (~) [ ~  (x, t) 

+~#){v,(t)-&%(x, t)} &0~(x, t)+ v~ ~ ~o~(x, 0 
+ ~ P~¢ (t7) 70 (Ix - x ' -  y (t) + y'(t')l, t - t') 

• 6qS~(x', t')] d(cp, ~). (3.4) 

The formal solution corresponding to (2.8) is 

• exp [½~ 6#5~(x, t) 6qS~(x', t') 

- P~(V) ,y (x -x ' , y ( t ) -y ( f ) ,  t - t ' )  
- ~  ~ ~ (x ,  t) ~ ~o~ (x', t ' ) ~ ( v )  0'(Ix-x'l, t-~') 

+ ~ 6 qL(x, t) ~ , ( v )  {v,(t)- &%(x, t)} ~ %(x, 03 

• exp[½~ q0~(x, t)q)~(x', t')P~(V) C([x-x ' ] ,  t- t ' )  
+~(p=(x,t)(o¢(x',t')P~(V)_~(lx-x'l,t-t')] (3.5) 

where 

~fi'(x --x', y(t) -- y (t'), t -- t') 

= 7o(]X--X' +y(t)--y(t')], t--t ')--~(Ix--x'],  t-- t'), 

O'(]x-x ' l , t - t ' )=vd6(x-x ' )-O([x-x ' l , t - t ' ) .  (3.6) 

The propagators C and/~ are solutions of (2.10) and 
(2.11), respectively, with ? and t/ replaced by ~ and 

The transformation (3.1) has the following group 
property. Assume we have two probability func- 
tionals ~(v;/~) and ~(v; #'). Defining 

.~(v;#,#')=~{v'(z)}~-~(v-v';#)~(v';# ') (3.7) 

we can write 

G({(p (x, t)}, {O(x, t)} ; #)=S ~{v(z)} ~(v;  #, #') 

• G({q) (x - y(t), t)}, {q3(x -y(t), t)} ; #') (3.s) 

where G(~0, qS;g) is given by (3.1) with ~(v;#). The 
similarity between (3.8) and (3.1) suggests the no- 
tation 

~(~, ~) = G(~, q~; 0), ~(v;~)=~(v;O,~) 

and 

~ -  l (v;~)=~(v;~,  0). 

For the following discussion of the DIA in the pres- 
ent formulation it is sufficient to consider Gaussian 
correlated advecting fields only• The distribution 
functional is 

~ ( v ; ~ , ~ ' ) = y ( ~ , ~ ' )  

• exp{-½~dtdt'  ~_ '~( t~,  V( t - t  ; # , # ) J  (3.9) 

where Y(/~, if) is a normalization factor and 

v ( t -  t'; ~, ~') = d- 1 ~ ~ {v(~)} v~(t) v~(t') ~(v; ~, ~') (3.10) 

is the second moment of the advecting velocities. The 
inverse transformation is determined by 

l (v;~,~ ' )=~(v;p ' ,~)  

=JV(#,#')exp{½~dtdt' v~(t)v~(t) "~ (3.11) 
V(t-t ';p,p')J 

but the integration in (3.3) now runs over imaginary 
advecting velocities v(z). Obviously V(t-  t' ; l~', #) = 
-V(t-t ' ;#,#') .  
For Gaussian correlated advecting velocities the dis- 
placements y(t) are also Gaussian correlated with 
second moment 

Y ( t -  t'; ~, ~') = d ~ S ~ {v(z)} lye(t)-- y~(t')] 2 ~(v;  ~, ~') 
t t '  

= 2  ~ dr( t - t ' - z )  V(z;t~,#'). (3.12) 
0 

The asymptotic expressions for small and large times 
a r e  

Y(t; I~, I~') ~ V(0; g, ~') t 2, 

Y(t;]~,/z) t-~ jdzV(z;k t ,# ' ) t - jdzzV(z ,# ,#)  
o o (3.13) 

provided V(,;#,#')  vanishes rapidly enough for 
T ----~ OO• 

The effect of the transformation on the correlation 
propagator C is most easily expressed in Fourier 
space where 

C(k,t;#)=exp{½Y(t;#,#')k 2} C(k, t;kt'). (3.14) 

/~, ~ and ~ transform accordingly• 
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4. Direct Interaction Approximation 

As in the Eulerian framework a propagator renormal- 
ized perturbation expansion is obtained by expan- 
sion of the first exponential in (3.5). Its exponent 
contains the advecting field linearly in its last term 
and also in 9' or 70. For reasons given later we can 
neglect the dependence of ,fi or 7o in (3.5) on the 
advecting field if we are interested in the small scale 
behaviour only• Statements concerning the large scale 
motions can not be made within the framework of a 
stationary turbulence driven by fluctuating forces be- 
cause those motions depend on details of the mecha- 
nism injecting energy into the system and on bound- 
ary conditions. 
The DIA involves again expansion of the first ex- 
ponent in (3.5) up to second order in P~(V) and the 
corresponding determination of the counterterms 9' 
and O'. The resulting expressions for the selfenergies 
are similar to those of the Eulerian DIA (2.14) but an 
extra term arises from the average over the advecting 
field 

9(k, t; #) = 70 (k, t) + k 2 C(k, t; #) V(t; #, O) 

+k  2 ~dpdqF(k,p,q) b(k,p,q) C(p, t;/0 C(q, t; #), 
A 

~(k, t; #) = v k 2 (5(t) + k 2 R(k, t; #) V(t; #, O) 

+k2~dpdqF(k,p,q)b(k,p,q)~(p, t;#)C(q, t;#) .  (4.1) 
A 

The integrals in this expression are, of course, still 
dominated by the contributions arising from q ~ K  o 
and diverge for Ko-+0. We have, however, not yet 
specified the second moment of the advecting field 
and we can choose this quantity such that this diver- 
gency is cancelled by a corresponding divergency in 
V(t;#,#') in the limit Ko-+0. A possible choice is 

V ( t ; # , # ' ) = -  ~ dpdqF(k,p,q) 
A~, #' 

• b(k,p,q) C(q, t;aq) (4.2) 

where ~ indicates integration over p and q satisfy- 
A #, #' 

ing the inequalities p>0,  # > q > # ' > 0 ,  p + q > k > l p  
-q l  assuming #># ' .  For # < # '  the choice V(t;#,#') 
= -V( t ;# ' ,# )  is consistent with (3.11). 
In the introduction we argued that the advecting field 
has to simulate the advection of the small scale 
structures by the large scale motions. If we are in- 
terested in motions with wavevector k>>K o it is rea- 
sonable to count the motions with wavevector 
q < ~ k as large scale motions with 1 > c~ > 0. This 
means an appropriate choice for # in (4.1) is #(k) 
=~k.  From 9(k,t;c~k) and O(k,t;c~k) the functions 
C(k, t; c~ k) and/~(k, t; c~ k) are obtained from (2.19). In 

the integrals of (4.1) we need, however, C(q, t;#) and 
/~(q,t;#) with #=c~k#:c~q. On the other hand, (3.14) 
allows to calculate these quantities from values for # 
=c~ q and the special choice (4.2) also involves these 
values of # only. 
The resulting DIA now contains functions with #(~c) 
= c~ ~: only and we can drop this variable again. The 
selfenergies are 

9(k, t) = 7o(k, t) + k 2 d(k,  t) w(k ,  t) 

+ k2 S dp dq F(k, p, q) b(k, p, q) 
A 

• {C(p, t) exp X(k,p, q, t ) -  C(k, t)} C(q, t), 

0(k, t )=vk  2 &(t) + k2 R(k, t) W(k, t) 

+ k 2 ~ dp dq F(k, p, q) b(k, p, q) 
A 

• {/~(p, t) exp X(k, p, q, t) - l~(k, t)} C(q, t) (4.3) 

with 

X(k ,p ,q , t )=-½{Y( t ;~k ,  eq)q2 + y(t;c~k,~p)p 2} (4.4) 

and 

W(k,t)= S dpdqF(k,p,q)b(k,p,q)C(q,t).  (4.5) 
Aoo,c~k 

(4.2) and (3.12) yields 
t 

Y( t ; c~k ,~q)=-2Sdz ( t - z )  ~ d~dq 
0 Aak, c~q 

• F(k, P, q) b(k, P, q) C(~, r) (4.6) 

for k>q  and Y(t;ek,  aq)=-Y(t;c~q,c~k) for k<q. 
The set of equations is closed by 

/~(k, co) = { - i co + 0(k, co)} - 1, 

C(k, co) =/~(k, co) 9(k, co)/~* (k, co). (4.7) 

The above equations are almost identical to the 
original Eulerian DIA equations (2.13-14) but the 
selfenergies (4.3) contain extraterms which remove 
the infrared singularities in the limit Ko---,0. As 
discussed in the next section Kolmogorov scaling 
solutions are therefore expected• 
Let us come back to the discussion at the beginning 
of this section where we had argued that the influence 
of the advection on 70 may be neglected. We are 
concerned with 7o(k,t)=~O for k ,~K o only. This 
means 7o(k,t) does not contribute to 9(k,t) unless 
k ~ K o. In this case the strength of the advecting field 
vanishes according to (4.2) because # ~ # ' ~ K  o. 

5. Scaling Solutions in the Inertial Subrange 

The above equations can be brought into dimension- 
less form using k-1 as lengthscale and 
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z(k) = e -  1/3 k 2/3 (5.1) 

as timescale. The resulting dimensionless functions 
can depend only on dimensionless variables like s 
=t/z(k) or Ko/k or Ke/k, where lCd=81/4V-3/4 is the 
inverse of the dissipation length. In the inertial sub- 
range, this is for K o ~ k ~ tee, a scaling form of the 
solutions of (4.3-7) is expected, for instance 

C(k, t) = Z  a 2/3 k -~-}+~ C(Z, 81/3 k ~+; t). (5.2) 

Kolmogorov 41 scaling or naive dimensional analysis 
yields ~ = 0 and ff = 0. The Z-factors have to be homo- 
geneous functions of K 0 and tq of degree - ~  and 
-if,  respectively. If, on the other hand, finite so- 
lutions of the above equations are found in the limit 
K o---, 0 and tce-* oo the anomalous dimensions ~ and 

have to be zero and Kolmogorov scaling is estab- 
lished. 
In order to see whether this is the case we have to 
study the infrared and the ultraviolet behaviour of 
the triangle-integrations in (4.3-6). As in the Eulerian 
DIA the limit ~ce~oo or v ~ 0  is not problematic. 
The limit K o -+ 0, however, causes divergencies in the 
Eulerian DIA arising from small q values. This is not 
the case in the present scheme as we shall see. Writ- 
ing p = k + p' the integration extends over - q < p' < q 
and we have to investigate the behaviour of the 
bracket in the integrand of (4.3). For t = 0  we can 
simply expand around p = k because X(k,p,  q, O) = 0 
and 

C(p, 0) - C(k, 0)~p '  ~q.  (5.3) 

This is sufficient to make the integral convergent in 
the limit K0--*0. 
At finite t we have to study the behaviour of X(k, k 
+p',q,t). The second term in (4.4) is proportional to 
p' as is easily seen from (4.6). Using the estimate 

C(q, t )< Cq -d -~  (5.4) 

in (4.6) we find 

- ½ Y ( t ; ~ k , ~ q ) < ½  Ct2 ~ dpdctF(k,p, ct) 
Ac~k, aq 

• b(k,F,q-)~l -~-~  q~° ~ C' t2q -2/3 (5.5) 

where C and C' are finite constants. This means X(k,  
k+p' ,  q, t) vanishes at least proportional to q in the 
limit q ~ 0  and the expression in the bracket of (4.3) 
is proportional to q for all finite times. This means 
~)(k, t) and O(k, t) are finite in the limit K o ~ 0. 
There is a nontrivial point concerning the long time 
behaviour of the present scheme. This is due to the 
fact that Y(t;  p, q) given by (4.6) increases asymptoti- 
cally linear in time. Since this quantity enters in the 

exponent of the exponentials in (4.3) the response and 
correlation functions have to decay at least exponen- 
tially in time with an exponent large enough such 
that ~)(k, t ) -*0 and t~(k, t)---~ 0 for t ~  oo. 
To make this point more precise we assume that C(k, t) 
and t~(k,t) decay exponentially in time. In other 
words we neglect the co-dependence of o2(k, co) and 
O(k, co) in (4.7). This yields 

,q(k, co) = { - ico + 0(k)}, 

d (k, co) =/~ (k, co) ,?(k)/~* (k, co) (5.6) 

and 

/~(k, t) = exp { - ~(k)t} O(t), 

d ' k  - ~(k) ( , t) - 2 ~  exp { - •(k) It I} • (5.7) 

This is certainly not correct at small times but might 
be sufficient for an estimate of the long time be- 
haviour. The above choice is motivated by the as- 
sumption that /~(k, co) can be approximated by a 
single pole and therefore 

~(k) = ~(k, - i,~(k)) 
oo 

= S dt [exp {~(k)t} + exp { - t~(k)t}] ~(k, t), 
0 

O(k) = O(k, - iO(k)) 

= S dt exp {t~(k) t} O(k, t). (5.8) 
0 

Writing (5.6) we have implicitly assumed 

&~(k, co). ~ 1. 

•co o~= - iO(k) 

A naive scaling assumption yields 

q(k)  =~l /3k2 /~q ,  

"2(k) =82/3k-d 2/3 d (5.9) 
2r~(k) 

where q and C are dimensionless constants, the latter 
is proportional to Kolmogorov's constant. 
Writing the above equations in terms of dimension- 
less variables and inserting the special timedepen- 
dence one obtains after some manipulations from the 
second equation in (5.8) 

~ -  d y B ( y ) y - 7 / 2 + S d x d y B ( x , y )  
C ~ 

"(xz/3 + y2 /3- -2o(x) - -Xo(y)  - 1  y-V~2} (5.10) 
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where 

B(x, y) --- y-~+ ~ F(1, x, y) b(1, x, y), 

B(y) = S dx B(x, y). 
A 

(5.11) 

In order to perform the time-integrations the asymp- 
totic form (3.13) for late times has been used, result- 
ing in 

O 
3~o(X ) = ~ x 2 ~. d y B(y) y- 7/3, 

1 

d 
XI(x ) =-~2 xa S dy B(y)y -3 (5.12) 

An estimate of these quantities is obtained if B(y) is 
replaced by its limit 

B(0) = {(4~z) e/2 F(½d + 1)}. (5.13) 

This results in 

;~ , ,  3B(O)C 
otX)= ~ { x 2 / + -  x2}, 

f( , ,  B(O)C,, l t x ) = ~ t ~  -x2}. (5.14) 

The denominator in the second term of (5.10) originates 
from the time integral of an exponential. This integral is 
finite only if the expression in the denominator is 
positive. With the estimate (5.14) it is easily seen that 
the minimum of this denominator inside the inte- 
gration range of x and y is at x=y=l /2 .  As as 
consequence 

B(0) C 4 ( 1 - 2 -  1/3) 
~+/3 t7 ~ < 3 (1 - 2- 4/3) -~ 0.456. (5.15) 

Another requirement is, of course, that the integral in 
the second term of (5.10) is not infrared divergent. This 
is not automatically fulfilled despite the discussion at 
the beginning of this section because the limit Ko/k ---, 0 
was discussed only for finite times, whereas now an 
integration over all positive times has been performed. 
This requirement yields with (5.14) and keeping 1 
- y < x < l + y  in mind 

exp{ B(0) 0~  3B(0) C 
~ j = l  4c~+/302 

or  
-28 ?j2 3B(0)  

='[3 lnO - fi)S with 4c~4/3 02. (5.16) 

For 0 < f l < l  real values of ~ are found and 
c~ <(2/3) 3/2 -~ 0.816. Eq. (5.15) yields together with (5.16) 
a lower bound ~>0.353. 
The first equation in (5.8) results in an expression 
similar to (5.10) which is also free of singularities if 
(5.15) and (5.16) is fulfilled. Both equations depend on 
the combination C/02 only. This means that they can be 
fulfilled for special values of ~ only. This is not 
surprising since the same exponent for the time de- 
pendence of the response- and correlation function (5.7) 
has been assumed. 
From the fact that the above equations are free of 
singularities we can, however, conclude that Kolmo- 
gorov scaling solutions with more general time de- 
pendence are likely to exist. A conclusive answer will be 
obtained from numerical calculations which have not 
yet been performed. 

6. Concluding Remarks 

In this paper, we have proposed a non Eulerian 
framework for a statistical theory of turbulence based 
on randomly advected velocity fields. The transfor- 
mation from the Eulerian to the randomly advected 
velocity fields involves a distribution functional of an 
advecting field. As a special choice a Gaussian distribu- 
tion has been investigated and this allows to eliminate 
the leading infrared singularity. A direct interaction 
approximation is then free of divergencies and con- 
sequently exhibits Kolmogorov 41 scaling in the in- 
ertial subrange for the statics as well as for the 
dynamics. The Eulerian correlation and response func- 
tions are identical to those of the randomly advected 
fields if all time arguments are identical. In general, they 
are obtained by an average over the advecting fields. As 
a consequence their characteristic timescale is the 
cutoff-dependent sweeping time. 
In higher orders of a renormalized perturbation theory 
additional infrared singularities are expected. Some of 
them can be removed by allowing more general non 
Gaussian distributions for the advecting fields. Other 
singularities are expected to persist giving rise to 
anomalous dimensions, for instance intermittency cor- 
rections to the exponent of the energy spectrum. 
Important questions are, of course, whether the number 
of such singularities is finite, whether the theory is 
renormalizable and whether a marginal dimension 
[121 exists. In an attempt to answer those questions the 
presently proposed non Eulerian DIA might play a 
similar role as does the Gaussian model for phase 
transitions. 

Fruitful discussions with Prof. S. GroBmann, Prof. U. Frisch, Dr. J.D. 
Fournier, and Dr. M. Lticke are kindly acknowledged. 



H. Horner and R. Lipowsky: On the Theory of Turbulence 231 

References 

1. Kraichnan, R.H.: Phys. Fluids 7, 1030 (1964) 
2. Kraichnan, R.H.: Phys. Fluids 7, 1723 (1964) 
3. Kraichnan, R.H.: Phys. Fluids 8, 575 (1965) 
4. Kraichnan, R.H.: J. Fluid Mech. 83, 349 (1977) 
5. Kolmogorov, A.N. : C.R. Ac. Sc. URSS 30, 301 (1941); Soy. Phys. 

Usp. 10, 734 (1968) 
6. Kolmogorov, A.N.: J. Fluid Mech. 12, 82 (1962) 

Obukhov, A.M.: J. Fluid Mech. 12, 77 (1962) 
Frisch, U., Sulem, P., Nelkin, M.: J. Fluid Mech. 87, 719 (1978) 

7. Wyld, H.W.: Ann. Phys. 14, 134 (1961) 
Martin, P.C., Siggia, E.D., Rose, H.A.: Phys. Rev. A8, 423 (1973) 
Bausch, R., Jansen, H.K., Wagner, H.: Z. Physik B24, 113 (1976) 

8. Kuznetsov, E.A., L'vov, V.S.: Phys. Lett. 64A, 157 (1977) 
9. Pouquet, A., Fournier, J.D., Sulem, P.L.: Preprint (1978) 

10. Forster, D,, Nelson, D.R., Stephen, M.J.: Phys. Rev. A16, 731 
(1977) 
Fournier, J.D., Frisch, U.: Phys. Rev. A17, 747 (1978) 
Abarbanel, H.D.I.: Preprints (1978) 
De Dominicis, C., Martin, P.C.: Preprint (1978) 

11. See for instance: Lestie, D.C.: Developments in the Theory of 
Turbulence. Oxford: Clarendon Press 1973 

Fournier, J.D., Frisch, U.: Phys. Rev. A17, 747 (1978) 
12. See for instance: Brezin, E., Le Gillou, J.C., Zinn-Justin, J.: Field 

Theoretical Approach to Critical Phenomena, in: Phase Tran- 
sitions and Critical Phenomena, Vol. 6, Domb, C., Green, M.S. 
(eds.), New York: Academic 1977 
Amit, D.J.: Field Theory, the Renormalization Group, and 
Critical Phenomena; New York: McGraw-Hill, Inc. 1978 

H. Horner 
Institut fiir Theoretische Physik 
Universit~it Heidelberg 
Philosophenweg 12 
D-6900 Heidelberg 1 
Federal Republic of Germany 

R. Lipowsky 
Sektion Physik 
Universit~it Miinchen 
Theresienstral3e 37 
D-8000 Miinchen 2 
Federal Republic of Germany 


