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The Migdal-Kadanoff scheme is applied to the Ising model with a free surface. The 
resulting renormalization group transformation and the duality transformation com- 
mute in any dimension. Two simple recursion relations are obtained which reproduce 
the global phase diagram for the semi-infinite Ising model. The surface critical exponents 
calculated in this way are comparable to those obtained by more complex position- 
space methods. In dimension d =2  + e', we find the exponents ~tl~sm--e' and y(hSm = 1 + e' 
for the multicritical surface-bulk transition. We also derive and discuss approximate 
differential recursion relations for the bulk and the surface free energies. 

1. Introduction 

The presence of a free surface strongly affects the 
phase diagram of an Ising model. There are four 
different types of phase transitions for dimension 
d > 2 :  the ordinary, the surface, the extraordinary, 
and the special or surface-bulk transition [1]. In 
order to discuss the thermodynamics of these tran- 
sitions one has to consider the surface free energy in 
addition to the bulk free energy [2, 3]. Near the 
various phase boundaries the singular part of the 
surface free energy is described by scaling laws. 
These scaling laws define a variety of surface critical 
exponents [2, 3]. 
Different renormalization group methods have been 
used to calculate these exponents. In a field theoretic 
approach one maps the Ising model with a free 
surface on a continuous ~b4-theory with an ad- 
ditional surface term [1, 2, 4-7]. Then, one can 
calculate the surface exponents in an z-expansion 
where e = 4 - d  [4, 5]. Recently, this expansion has 
been accomplished up to o(5 2) for the ordinary tran- 
sition [6, 7]. On the other hand, various position- 
space renormalization schemes have also been used 
[8-12]. They are directly applicable to the discrete 
Ising model defined on a lattice. Comparing the 
exponents obtained in this way with exact results 
known in dimension d = 2  one finds a typical ac- 

curacy of the order of 10%. In contrast to the field 
theoretic approach, one may also use the position- 
space methods to investigate the global phase dia- 
gram as well as thermodynamic functions like the 
surface free energy in the whole temperature regime 
(e.g. [11]). 
The position-space methods used so far for the semi- 
infinite Ising model include cell cluster expansions 
[8, 9, 11], cumulant expansions [9, 12], and 
Kadanoffs  variational method [10]. In this paper 
we apply the Migdal-Kadanoff (MK) scheme [13, 
14] to this problem. This approach has several ad- 
vantages: 

1. It turns out that we can use the same prescription 
both for the bulk and for the surface. In a cell 
cluster or cumulant expansion one must use dif- 
ferent majority rules for the surface and the bulk 
spins in order to avoid unphysical features of the 
resulting renormalization group transformation 
[9]. 
2. The recursion relations obtained in the M K  
scheme are easily continued to arbitrary dimension 
[13]. Thus, we can explicitly incorporate the pre- 
sence of two lower critical dimensions d* = 1 and d* 
=2:  for d<d* there is no phase transition at all, 

0340-224X/81/0042/0355/$02.20 



356 R. Lipowsky and H. Wagner: The Migdal-Kadanoff Renormalization Group Scheme 

and for d<d~ there is only the ordinary transition. 
This reveals the possibility to calculate the surface 
critical exponents for the surface and for the surface- 
bulk transition by an g-expansion in dimension d 
=d~+g. 
3. The M K  renormalization scheme has been ap- 
plied to a large variety of lattice models with per- 
iodic boundary conditions (e.g. [15-18, 25]). For all 
of these models, the effect of a free surface can be 
easily investigated by our approach. 

The paper is organized as follows. After the de- 
finition of the model in Sect. 2 we show in Sect. 3 
that the M K  scheme may be easily extended to this 
problem. In Sect. 4 we discuss the M K  schemes for 
the dual models and show that the M K  transfor- 
mation and the duality transformation commute in 
any dimension. Section 5 contains the global phase 
diagram and the relevant eigenvalues. Finally, we 
discuss the free energy in Sect. 6. Although our sys- 
tem is not translationally invariant the infinitesimal 
M K  transformation still yields a lower bound ap- 
proximation to the free energy. In order to estimate 
the accuracy of this bound we investigate the M K  
approximation both for the bulk and for the surface 
free energy. 

2. Model  

Consider an Ising model on a d-dimensional hyper- 
cubic lattice with free boundary conditions in one 
Cartesian direction which we denote by z and per- 
iodic boundary conditions in the remaining ( d - 1 )  
directions which we denote by xr f l=2 , . . . , d .  The 
lattice has N sites with N s sites belonging to the 
surface. Thus, the free surface consists of two parts: 
a "front" and a "back" surface. The free energy of 
this system is given by 

F(E, Es, K, Ks, H, Hs) 

= (N - N,) E + g~ E s + In ~ e ~r (2.1) 
{a} 

with the Hamil tonian 

.~(a) = ~ B(ai, a j), (2.2) 
(i j )  

H 
K o-~ o-j + ~ (o-i + o-j) i, j e A - A s 

H 
B(o-i, o-j)-=. K • aiff j 4-~-~o- j i e A s , j e A -  A s 

Hs 
K s f f i f f j + ~ ( o - i " b ( T j )  i,jeA~ (2.3) 

( i  j )  indicates a sum over nearest neighbours, and 
A s is the set of all surface sites while A - A  s is the set 
of all sites not at the surface. K, K• and K s are 
nearest neighbour couplings (see Fig. l a) while H 
and H s are the bulk and surface magnetic field re- 
spectively. The spin independent couplings E and E S 
have also been included since we generate such 
couplings under renormalization. 

3. Renormalizat ion Group Method 

We apply the Migdal-Kadanoff  scheme to the above 
model. This scheme consists of successive transfor- 
mations by a scale factor b along each of the d 
Cartesian directions [14]. For  integer b=2 ,3 ,  ... one 
must consider both anisotropic bulk couplings K. '= 
(K1, . . . ,Ka) with K I = K  z and anisotropic surface 
couplings Ks..=(Ks2 . . . . .  Ksd ) as indicated in Fig. l a  
for d = 2  and H = H s = 0 .  In Fig. l b and Fig. l c the 
successive transformations are depicted for b=3 .  In 
the first step, the bonds K z are moved in such a way 
that we may sum over the spins indicated by a cross 
in Fig. lb.  This results in new couplings/~a, R 2, R l, 
and /s If one looks at Fig. l b  it may seem that we 
could move any fraction of the shifted ( b - 1 )  coup- 
lings K z onto the surface bond K s. However, for 
finite N, N s one should require that both "back" and 
"front" surface are treated in the same way. This 

K s 

13 

K~ 

'1 

X X 

X X 

X X 

X X 
Fig. 1. Successive steps of the MK 
transformation at the free surface 
for b=3 as explained in the text 
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b - 1  
uniquely determines the fraction ~ .  Now we 

move the bonds/s  a n d / s  and sum over the cross- 
ed spins of Fig. 1 c. In this way we arrive at a new 
Ising model with lattice constant b and renormalized 

! couplings K1, K~, K~ and K' s. 
The summations performed in each step are called 
dedecoration transformations [19]. They are dis- 
cussed in Appendix A. Extending this procedure to 
arbitrary dimension d we obtain the recurs• re- 
lations 

K'~=bd-~(b~-lg~) ~ = l , . . . , d ,  (3.1 a) 

K's~ = be - ~ - ~ ~ (b~ - 2 Js~ ) f i=2,  ...,d, 

Js~: = Ks~ + � 8 9  1) g~ (3.1 b) 

K'~ =b  d- 1 arth {thK• b- 1} (3.1 c) 

with 9(x) :  = arth(thx) b. For finite b, the renormalized 
couplings depend on the order in which the d suc- 
cessive transformations have been performed. How- 
ever, in the infinitesimal rescaling limit b ~  1 + ~ l the 
transformations in the different directions commute. 
Asia consequence, we may set K~=K and K s , = K  s 
as in our model defined by (2.3). In this limit we 
obtain from (3.1) the differential recurs• relations 

b~1+(Sl this procedure yields (to first order in the 
magnetic fields): 

dH 
= (d - 1 - s h  2K In thK) H, (3.3 a) 

dl 

dHs 
d~-= (d -  2 - s h  2K~ In thK~)H~ 

H 
+ {�89 - 1 ) - �89177 In thK} d" (3.3 b) 

Of course, one could use another division of the 
surface field H s. The above choice ensures, however, 
that (3.3b) for H = 0  reduces to the bulk field re- 
curs• relation (3.3a) in ( d - 1 )  dimensions. In this 
respect, our choice is unique. 
The infinitesimal MK  transformation when applied 
to the bulk problem has two interesting features: it 
yields a lower bound to the free energy [14, 15], and 
it commutes with the duality transformation. We 
show in Sect. 6 that the lower bound property still 
holds in our case where translational invariance is 
broken in the z-direction. The relationship between 
the Migdal-Kadanoff and the duality transformation 
is discussed in the next Section. 

dK 
- ( d  - 1) K +�89 2K In thK,  (3.2 a) 

dl 

dKs 
dl =�89189 (3.2b) 

4. Migdal-Kadanoff Transformation and Duality 

From (3.2a, b, c) we may obtain differential recurs• 
relations for the dual couplings K*, K* and K* 
defined by K* = - �89  in thK etc." 

dK• 
-- (d - 1) K• +�89 2K• In thK. (3.2 c) 

dl 
dK* dK dK* 

d ~ - d l  dK - K * + � 8 9  (4.1a) 

(3.2a) is the well known recurs• relation for the 
bulk i.e. for the isotropic Ising model with periodic 
boundary conditions (e.g. [-16]). Note that the d- 
dimensional recurs• relation (3.2b) for the surface 
coupling K s reduces with K = 0  to the recurs• 
relation (3.2a) for a (d-1)-dimensional  bulk system. 
In a cell cluster approach, one has to change the 
majority rule at the surface in order to obtain this 
property [9] which must hold in an exact renormal- 
ization group transformation. 
In order to handle the magnetic fields H, H s in a 
similar fashion each bulk field H is divided into 2d 
pieces [20, 21] and each surface field Hs is divided 
into 2 ( d - 1 )  pieces as indicated in (2.3). The result- 

H 
ing bond interaction terms 2d (al +aj) and 

Hs (a i+ aj) of the Hamilton• (2.2) are moved 
2 ( d -  1) 
along with the nearest neighbour couplings. For  

elK* 

dl 

dK* 

dl 

- K  s +~sh2K s [~lnthK* +(d-2) ln thK*] ,  

(4.1 b) 

= K* + l ( d -  1) sh 2K* In th K*. (4.1c) 

On the other hand, we may apply the appropriate 
Migdal-Kadanoff transformation directly to the dual 
model obtained from (2.2) with / - /=Hs=0 .  In dim- 
ension d--2, the dual model is an Ising model with 
fixed boundary conditions in the z-direction (the 
duality transformation is discussed in [22, 23] for 
periodic, and in [24] for more general boundary 
conditions). Since we have to treat both the "front"  
and the "back" surface in the same way and require 
that every new bond contains b old bonds, we must 
shift bonds perpendicular to the fixed surface as 
shown in Fig. 2 for b = 3. Parallel to the fixed surface 
the bonds are still shifted as in Fig. lc. For b ~ l + 6 l  
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Fig. 2. Bond moving perpendicular to the fixed surface in the 2- 
dimensional dual model. The (+)-spins are fixed 

~S 
4- 

Fig. 3. Coupling constants of the 3-dimensional pure 7Z2-gauge 
model at the fixed surface. The fixed bond variable is indicated by 
(+) 

this procedure results in the recursion relations (4.1) 
dK* , 

with d = 2. In this case, ~ - ( K  ) has the same func- 

dK 
tional dependence as ~ - ( K )  which reflects the self- 

duality of the 2-dimensional Ising model in the bulk 
thermodynamic limit. As a consequence, (3.2a) and 
(4.1a) give the exact Onsager value for the critical 

coupling KC=K*C=�89 ln(1 + l ~ )  E13, 16]. 
In d=3,  the dual model is a pure 7Z2-gauge model 
with fixed boundary conditions in the z-direction, 
i.e. fixed bond variables at the surface. This model is 
schematically depicted in Fig. 3 with r i :=K*,  ris: 
= K *  and rills=K*. The plaquette couplings have 
been renamed since we want to consider this model 
for arbitrary dimension. For d = 2, the pure 7Z2-gauge 
model is exactly soluble. For d > 2  one has to shift 
plaquette interaction terms as discussed by Kadanoff 
[14, 15] for the bulk. The generalization to our case 
is straightforward if we determine the shifts perpen- 
dicular to the fixed surface as in the Ising model 
above. For b--,1 + 61 we arrive at 

~-i = ( d -  2) fl + sh 2 ri ln th ri, (4.2a) 

dri~ 
=(d-2)ris+sh2ri~(�88 l lnthri~), (4.2b) 

dl 

drill = ( d -  3)rill +sh 2rill In thrill + ri. (4.2 c) 
dl 

For d=3,  (4.2) and (4.1) are identical since r i=K*, ris 
= K* and rill = K* in this case. Thus we have shown 
that the MK transformation and the duality trans- 
formation commute for d--2 and d=3.  This argu- 
ment can be easily extended to all integer dimen- 
sions. 

5. Global Phase Diagram and Relevant Eigenvalues 

We now take the thermodynamic limit in such a 
way that we end up with a semi-infinite system. This 
enables us to integrate the recursion relation (3.2) till 
l=  oo and thus to reach various fixed points. 
In contrast to more complex position-space schemes 
[-8-12], the subspace K I = K  is invariant under the 
MK renormalization transformation (3.2). In ad- 
dition, all fixed points lie in this 2-dimensional cou- 
pling constant subspace. Since 6 K • 1 7 7  is al- 
ways an irrelevant perturbation we may confine the 
discussion of the phase diagram to the case K• =K.  
The flow in this subspace is governed by (3.2a, b). 
These simple recursions reproduce the whole phase 
diagram for the semi-infinite Ising model [-3, 8-10]. 
In Fig. 4a and 4b we depict the global phase dia- 
grams for l<d__<2 and 2 < d  respectively. In the 
figure caption, we refer to the fixed point termi- 
nology of Burkhardt and Eisenriegler [9, 10]. The 
Ks-coordinates of the various fixed points are: K] ~ 
=0.092 in d=2,  and K~~ r~(s)_ 1 h,(1 +1~) ,  
and (s~ K s )=0.346 in d=3.  
From the bulk recursion (3.2a) one derives the ther- 
mal eigenvalue Yt [13, 16] along the phase bound- 
ary K = K c: 

e d = l + e  
y , = d + c h 2 K C l n t h K  c= 0.754 d = 2  (5.1) 

[0.943 d=3 .  

The O(e) result for Yt also follows from (3.1) and is 
therefore independent of b. Thus, one expects that it 
is exact [25]. This expectation is supported by the 
field theoretic renormalization of the drumhead mo- 
del [-26]. The perturbation 6 K s , = K s - K ~  ") is irre- 
levant at the ordinary critical fixed point (0) and 
relevant at the surface critical and surface-bulk mul- 
ticritical fixed points (S) and (SB). The correspond- 
ing eigenvalues for d = 3  are compared in Table 1 
with results obtained by other position-space meth- 
ods [-9, 10, 12] and with exact results. The position- 
space methods referred to in Table 1 include: the 
two-cell cluster approximation with the usual ma- 
jority rule (CCL) and with a changed majority rule 
denoted by M2 in [-9] (CCL'), the lowest order 
cumulant approximation with the usual majority 
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Fig. 4. Global phase diagram for a 
l < d < 2  and b 2<d.  The various 
fixed points are: bulk ferromagnetic 
(BF), extraordinary (E), surface 
ferromagnetic (SF), ordinary critical 
(O), surface critical (S), and surface- 
bulk multicritical (SB). The arrows 
indicate trajectories of the M K  
renormalization group 

rule (CUM) and with majority rule M2 (CUM'), and 
Kadanoffs  variational method (KV) (note that , (s) is .Vh~ 
denoted by y~= 2 in [9, 10, 12]). 
The magnetic eigenvalue along the line K=K c as 
obtained from (3.3a) is [13, 27] 

l + e  d = l + g  

Yh=d-l-sh2KClnthK~=Jl.881 d = 2  

[2.558 d=3 .  

(5.2) 

At the discontinuity fixed point (BF) the bulk field 
recursion (3.3a) gives the exact result Yh=d [28]. 
From the surface field recursion (3.3b) one finds that 
the surface field H s is relevant at all fixed points. 
The corresponding eigenvalues are denoted by Yh~('). 
At the fixed points (BF), (E), and (SF) where K~ ") 
= oo the M K  scheme yields the values "(BF)--,,(E) 

�9 f h l  - -  Y h l  

_ .  (sv) d -  1 consistent with the existence of a non- --Yhl ~- 
zero surface magnetization at the corresponding 
transitions [9, 10, 28]. The results for Y(h'~ at the fixed 
points (0), (S), and (SB) are listed in Table 1 for d 
=2,  3. At the high temperature fixed point (P) both 
the bulk field recursion (3.3a) and the surface field 
recursion (3.3b) are spurious since the magnetic per- 
turbations must be marginal for all d while these 
recursions yield y~P)= d - 1  and - (e) d - 2 .  This is an Yhl  = 

artifact of the above bond moving scheme where 
magnetic fields are moved even for K=Ks=O 
[29, 16]. 
Of course, we cannot expect to get precise values for 
the exponents in d = 3. In d = 2 + s', however, we may 
obtain the surface critical exponents at (S) and (SB) 
correct up to O(d). Since the surface recursion (3.2b) 
with K = 0  reduces to the bulk recursion (3.2a) in (d 
- 1 )  dimensions the exact scaling relation yl~)(d) 
=yt(d-1) holds in our scheme. Thus, from (5.1) we 
get y~Sl)(2 + e')= e' at the surface fixed point (S). At the 
surface-bulk fixed point we find the same value since 

1 - K  c )/s  B) _ tl - , - l + c h  2K~ sm lnth K~ sm and K~ s in -  2e' 

c 1 l n ( l + l f ~ ) + O ( d )  in d = 2 + d .  We argue with K =3  
that this value ),}sin is exact in O(e') since it also 
follows from (3.1) and therfore does not depend on 
the rescaling factor b [25]. For finite b, the coor- 
dinates of (SB) in d = 2 + d are 

K ( S m = •  b-(~- 2) ( l _ b -  lKc ~ 
s~ lnb 1] 

wi th /?=2,  ..., d. K] is obtained from (3.1a). 
We may also calculate y~'] near to the lower critical 
dimensions d* = 1 and d* =2.  Since the fixed points 

Table 1 

Exact M K  CCL CCL' CUM CUM' KV 
value [9] [9, 117 [12] [9] [10] 

d = 2  
d = 3  

•(0) 1/2 0.44 0.64 0.61 - 0.55 hi 
y~S) 1 0.75 0.46 0.89 1.12 1.01 1.00 
yl sm - 0.63 0.08 0.72 0.05 0.79 0.87 
y~O) _ 1.19 1.13 0.79 1.54 0.56 0.74 
y~Sl 15/8 1.88 1.84 1.66 2.65 2.15 1.88 
y~Sm _ 1.82 1.21 1.56 1.62 1.97 1.75 
y ~  2 2 1.98 2 oo 2 2 

Relevant eigenvalues y~'] and y~'~ obtained by different position-space methods. The abbreviations 
at the head of the table are explained in the text 
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(0) and (BF) merge un d* = 1 one obtains ~h~"(~ + ~)= ~" 
This implies that the scaling relation (0) 1 Yh~ = ~(d-  Yt) of 
Bray and Moore [5] does not hold in d = 1 + e. Since 
the fixed points (S) and (SF), and the fixed points 
(SB) and (E) merge in d* = 2 it follows that y~s)(2 + g) 

(SB) , : =Yh~ ( 2 + e ) = 1 + ~ .  

6. MK approximation for the Free Energy 

Moving bonds as depicted in Fig. lb  and lc  means 
that we add terms of the form 

b 

A : = ( b -  1)B(a 1, a'l)- ~ B(a,, a') 
n = 2  

to the Hamiltonian (2.2). If the expectation value 
(d}  vanishes this procedure yields a lower bound 
approximation for the flee energy [14, 15] due to the 
Peierls inequality (ea}_>e <~>. This holds in the Ising 
model with periodic boundary conditions since all 
(B(a,a')} are equal in this case. However, in the 
Ising model with a flee surface as defined by (2.1) 
the expectation values (B(a, a')} depend on the dis- 
tance from the surface. Thus, ~A}4=0 for the bond 
shifting performed perpendicular to the surface, and 
our scheme is not a lower bound approximation for 
finite b. The same problem arises in Kadanoffs va- 
riational method as discussed by Burkhardt and 
Eisenriegler [10]. There, the authors considered a 
sequence of RG transformations such that the per- 
pendicu~ar shifts begin farther and farther away 
from the surface. In our case, it is possible to devise 
a modified bond moving scheme where all bonds are 
moved parallel to the surface. This scheme is de- 
scribed in Appendix B. For integer b the resulting 
transformation is quite different from the MK trans- 
formation (3.1). However, in the limit b ~ 1+6I  we 
recover the differential recursions (3.2a, b) and 
(3.3a, b). This implies that the MK scheme described 
in Sect. 3 is a lower bound approximation in the 
infinitesimal rescaling limit for K = K• 
In order to get an estimate for the accuracy of this 
bound for H = H ~ = 0  and Kz=K~ we introduce an 
approximate free energy FMK: = ( N -  N s) E + N~E~ 
+fMK(K,K~) which is not changed under the M K  
transformation i.e. 

N E + N~(E s - E) +fMK(K, Ks) = N' E' + N;(E; - E') 
+fMK(K', K;) (6.1) 

where the number of sites and of surface sites trans- 
form according to 

N' = b-d g + (b-(e-1)- b-e) �89 Ns (6.2a) 

N; = b -(e- 1)N~ (6.2b) 

and the renormalized spin independent coupling E' 
is 

d 

E'=baE+ ~ b~-~OE(b~-IK~) (6.3a) 
a = l  

6E(x):=(b-1)ln2+�89 (6.3b) 

The 6E-terms are generated by the dedecoration 
transformations as explained in Appendix A. There, 
we also derive the corresponding expression for E;. 
Note that the transformation (6.2a) for the total 
number of sites N depends on the number of surface 
sites N~, and is therefore affected by the presence of 
the free surface. This should be compared with an 
Ising model with periodic boundary conditions 
where N transforms according to N ' =  b-dN. 
The quantity of interest in (6.1) is the function fMK 
which approximates the configuration sum in (2.1). 
In the next two subsections we will investigate the 
corresponding bulk and surface free energies. 

6.1. Bulk Free Energy 

We define the approximate bulk free energy fa  by 

f~(K):= lim fMK(K,K~) Deriding (6.1) by N and 
N ~ o o  g 

taking the thermodynamik limit we arrive at 

fs(K') = bdfB(K) + b d E - E' (6.4) 

[n the infinitesimal rescaling iimit we set K~= K, 
1 . . . .  , d and obtain from (6.3) 

E' = E + 61 d(E + g(k)), (6.5 a) 

g(K): = ln  2+ch2K l n c h K - s h 2 K  lnshK. (6.5b) 

If this is inserted into (6.4) the differential recursion 
relation 

df~ d--i-=dfB(K)--dg(K) (6.6) 

results. The general solution of this differential equa- 
tion is 

oo 

fB(K) =d ~ dIe-d~ g(R~(l, K)) + C(K), (6.7 a) 
0 

C(K)." = lim e-atfB(R.(l, K)) (6.7b) 

where K is the initial value / (( /=0,  K). In order to 
get a unique solution we must specify the boundary 
condition C(K). In general, this depends on the fixed 
point reached in the limit l-+r We would like 
to choose these boundary conditions in such a way 
that the approximate bulk free energy (6.7) has the 
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exact asymptotic behaviour [11]: 

K) (dK4 K ---* ov (6.8a) 
f.( [ l n 2 + � 8 9  2 K ~ 0 .  (6.8b) 

It is shown in Appendix C that C(K)=0  is appro- 
priate for both K > K~ and K < K~. Thus, in contrast 
to the cell duster  approximation [ i t ] ,  one can easily 
incorporate the correct asymptotic behaviour (6.8) in 
the M K  scheme. 
In d = 1, (6.7) with C(K)= 0 gives the exact bulk free 
energy fB(K)=ln(2chK). In d=2 ,  we may compare 
(6.7) with the exact result [30]. This is done in 

~d~ Fig. 5a. The corresponding bulk energies 8B:= 0K 

are compared in Fig. 5b. As expected, the approxi- 
mate f s  is always bigger than the exact one. (Note, 
that we have absorbed a factor ( 1) in the de- 
finition of F and fs .  Thus, a lower bound approxi- 
mation gives an upper bound for these quantities.) 
The relative error of the approximation is less than 
5 ~o for f s  over the whole temperature regime. 

6.2. Surface Free Energy 

We define the approximate surface free energy f~ by 

f~(K, Ks) = lira fMK(K' Ks) -- NfB(K) (6.9) 
N ~ a z  N s 
N s ~  o3 

(1 
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Fig. 5. MK approximations (full curves) and exact results (dashed 
curves) for the bulk free energy and the bulk energy of the 2- 
dimensional Ising model. The scale for the K-axis is proportional 
to th(K) 

If we use the transformation laws (6.2a, b) and (6,4) 
for N, N~ and fB in (6.1) and take the thermody- 
namic limit we obtain 

s  K') = b d- ~f~(K, K~) 

+ b d- 1 (E~ - E) - (E' s - E') 

- �89 a -  b"- ~) (E +fB)- (6.10) 

Note that the bulk free energy fB is present in the 
recursion relation for the surface free energy f~. In 
the limit b ~ 1 +61 the spin independent coupling E' 
is given by (6.5) and the spin independent surface 
coupling E', given by (A.8) for finite b reduces to 

E', = E~ + 6/((d - 1) E s + (d - 1) g(Ks) + �89 + �89 

(6.11) 

where g(x) is defined by (6.5b). If we use these ex- 
pressions in (6.10) we arrive at the differential re- 
cursion relation 

dfs(K, K~) 
= ( d -  1)f~ + G(K, K~), (6.12a) 

dI 

G(K, Ks):= ( d -  1){g(K)- g(Ks)} + } {g(K)-f~(K)}. 
(6.12b) 

Direct integration of the differential equation (6.12a) 
yields 

f~(K, Ks)=~ dle-(d-~)~G(l)+C~(K,K~), (6.13a) 
0 

C~ (K, K~):= lim e-(~- ~)~ f~(R(l, K), R~(I, K, K~)) 

(6.*3b) 

with G(I):=G(~2(I,K), ~2~(t,K, Ks)) and the initial 
vaIues K = K ( 0 ,  K) and Ks=R~(O,K,K~). It is again 
possible to choose the boundary conditions 
C~(K, K~) such that the approximate surface free en- 
ergy (6.13) has the exact asymptotic behaviour given 
by t l l ]  

[ - �89 d K  + (d - 1) (K, - �89 K) 

L(K, Ks) I 
[(d - 1) �89 - K 2) - -  I K 2 

K, K s ~  oo 

(6.14a) 

K, Ks~O. 
(6.14b) 

It is shown in Appendix C that the appropriate 
boundary conditions are Cs(K,K~)=O for K<K c 
and 

C,(K, Ks)= lim e - ( d - l ~  l~dK(I K) k - - S ]  \ , 
l ~ o o  

=-~dK+�88  I (6.15) 
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for K>K~. For the bulk free energy (6.7) we found 
C(K)=0  both at the high and at the low tempera- 
ture fixed point since the factor e -d~ in (6.7b) do- 
minates in both cases. In contrast, the term (6.15) 
survives for the surface free energy at the low tem- 
perature fixed point (BF) since /{(1, K) is propor- 
tional to e (e-~)z for K>K~ and large 1 which cancels 
the factor e -(a-*)~ in (6.13b) and (6.15). 
In dimension d - 1  the recursion relation (6.12a) 
reduces to 

dfs= dK G(K' K~(K))=�89 (6.16) 
dI dl dK 

The solution to this equation yields the exact surface 
free energy fs(K, Ks)= -�89 chK which does not de- 
pend on K s. In d=2,  the exact surface free energy is 
known only along the physical line K=K s oc (tem- 
perature) 1 [30]. In order to calculate the approxi- 
mate fs from (6.12) for this special case we have to 
integrate along the renormalization group trajec- 
tories shown in Fig. 6. The result of these inte- 
grations is compared in Fig. 7a with the exact result. 
In Fig. 7b we compare the corresponding surface 

C3fs(K'Ks=K) For  K>K~ the ap- energies e~:= c?K 

proximation is quite good, the relative error being 
less than 15 %. For K<Kc, the approximation is less 
reliable with a maximum relative error of 36 %. In 
contrast to the approximate bulk free energy (see 
Fig. 5a), the approximate surface free energy is al- 
ways smaller than the exact one. This is consistent 
since a bound on the total free energy does not 
imply any bound on the surface free energy. The 
singular part of the surface free energy which is a 
solution of the homogeneous part of the recursion 
relation (6.12) is proportional to IK-K~I (~-1)' near 

K S 

c o  

(SF) {E) / /  BF) 

/ / ](0} 

0 K 
0 K c co 

Fig. 6. Typical renormalization group trajectories (full curves) 
along which the surface free energy is integrated. The initial 
values of these trajectories lie on the physical line K 
= K C cc (temperature) - t (dashed curve) 

r',t- 
- 0 . 2 -  

W 
W 
W 
"" -0.4 LL 

LLI 
(.O 

-o.6 rY 
:D 
t,o 

>-  
(-9 
pc. 
W 
Z 
LU 

IJJ 
0 
,<, 
r'r" 
U') 

1.5 

1.0 

0.5 

iI 
[I 

\ 
k 

x 

K l 

0 K c co 

Fig. 7. MK approximations (full curves) and exact results (dashed 
curves) tbr the surface free energy and the surface energy of the 2- 
dimensional Ising model with K,=K.  The apparent increase of 
the slope of the surface free energy for large K is due to the scale 
for the K-axis which is proportional to th(K) 

K c. In d=2 ,  the MK scheme gives v=1.33 which 
follows from (5.1) while the exact value is v=  1. As a 
consequence, the exact surface energy es has a loga- 
rithmic divergence [-30] while the MK  scheme gives a 
cusp. The same misrepresentation of the singularity 
is encountered in a cell cluster approximation [11]. 

Helpful discussions with H.W. Diehl, S. Dietrich, R. Diimcke, E. 
Eisenriegler, and D.M. Kroll are gratefully acknowledged. 

Appendix A 

The effect of a dedecoration transformation in d =  1 
for arbitrary rescaling factor b is most easily derived 
by the transfer matrix method. If we sum over ( b - 1 )  
out of b spins of a one-dimensional Ising chain we 
get the renormalized couplings from the matrix 
equation 

T(E', K', H')= Tb(E, K, H) (1.1) 

for the transfer matrix 

[e K+H e--K 
T(E, K, H)= e El2 eK_H ! / e E/2 

\e  - K  
(A.2) 
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It is easy to analytically continue (A.1) to non-in- 
teger b since 

Tb=2  b % 1%> <COnl (1.3) 
n 

for any matrix T where co. and jco.> are the eigen- 
values and eigenvectors of T respectively. 
For H = 0 one finds 

change occurs in the first step where we shift bonds 
perpendicular to the surface. If we denote E~:=E~ d) 
we obtain from (1.7) 

t d -  E~=b l{E~+l(b-1)E}+�89 
d 

+ ~ b e-*bE(b*-2d~p). (1.8) 
p=2 

1(::, 
t+ 

with t+_ :=(chK)b+(shK) b. If we insert (1.4) in (1.1) 
it follows that 

E'=bE+bE(K) 

bE(K):=(b-1)ln2+�89 2b} (1.5) 

which is the recursion for the spin independent bulk 
coupling E in d = l .  For d > l  each of the d suc- 
cessive MK transformations described in Section3 
generates such a term: 

E(1) =b E + b E(K1) 

E (2) = bE o) + bE(bK2) 

"E(e) = bE(e- 1) + b E(b a- 1Ke). (A.6) 

If we denote E ' : = E  (e) we arrive at 

d 

E'=beE+ Y', bd-~bE(b~-lg~). (6.3a) 
~ = 1  

At the free surface the corresponding transfor- 
mations for the spin independent surface coupling E~ 
are 

<i) = E~ + �89 i) E+�89 b e(K1) 

E~ 2) = b E~ 1) + b E(/~2 ) 

k~e)= bEta- 1)+ bE(b e_ 2 j j  (A.7) 

where Jsz = K ~  + �89  1) K~ as defined in (3.1 b). As 
compared to the transformation (1.6) the only 

Appendix B 

In this appendix we describe a modified MK  scheme 
where bonds are shifted only parallel to the free 
surface. This scheme may be applied in arbitrary 
dimension. For simplicity, we confine the description 
to the 2-dimensional case. In Fig. 8 the successive 
steps of this modified bond moving procedure are 
depicted for b = 5  and H = 0 .  In the first step, we 
generate "ladders" of length �89 ( b - 1 )  as shown in 
Fig. 8a. We rearrange bonds by parallel shifts in 
such a way that each "ladder" bond in Fig. 8a be- 

1 
comes proportional to b - ~ '  

All spins of the "ladders" indicated by a cross in 
Fig. 8a are summed over. This gives an effective 
coupling j between the two spins at the end of the 
"ladder" as indicated in Fig. 8b. Since we want to 
take the infinitesimal rescaling limit b ~  1 + h i  we 
have to evaluate r~(b--1) where 

~= 

leJx+2J~ eJx-2Jz 

eJxl 2d= eJx + 

\ 1 1 

1 1 
e-Jx+2J= e-Yx-2J= 

e-Jx 2Jz e-Jx+2Jz 

is the transfer matrix of one square of the "ladder" 
shown in Fig. 9 for zero magnetic field. The eigen- 
values of this matrix are 

+ Jx ") c01/2 = e -  2sh_J~ 

o9~/4 =-2 {ch Lch2J~ +_~ii + sh2,1~chg2L). (B.2) 

Jz 

X X X X 

X )-" X X 
Fig. 8. Successive steps in the 
modified bond moving scheme. The 
horizontal direction is perpendicular 
to the free surface 
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/ 

/ 

I 

I 

k, 

Jz 

I \/I 
Jx J x 
2 2 / /t 

J z  

Fig, 9. Generic "ladder" square which yields the transfermatrix T.. 
The interaction term d~ is equally divided between adjacent squa- 
res 

For finite b we obtain from ~-~(b-~) the effective 
coupling Y by 

1 -- ~r~�89 1) 

thJ = 2 shJ~shZ J~ A + + f2 ~(b- ~) A (B.3) 

with f2:= ~% and A+:=+__chJ~+]/l+sh2Jxch22j~. 
60 3 

In the infinitesimal rescaling limit b ~ l + 6 l  we ob- 
tain from (B.3) 

J=K+31sh2K(co thK- thK)+O(e  -~/a~) (B.4) 

2 
since J ~ = J ~ = ~ K  in this limit. For H4=0 we have 

evaluated the eigenvectors of T(H) to first order in 
the magnetic field while the eigenvalues are not 
changed in this order. 
Finally, we move all effective couplings j onto one 
bond as indicated in Fig. 8c. This ensures that the 
renormalized couplings K'~, ~= 1,2 which are effect- 
ed by summing over the crossed spins in Fig. 8c are 
identical for both Cartesian directions. Since we 
have moved bonds only parallel to the surface the 
scheme just described is a lower bound approxima- 
tion for all b. For b ~ l  +c~l this procedure yields the 
differential recursion relations (3.2a, b) and (3.3a, b). 

Appendix C 

First, we discuss the behaviour of the bulk and 
surface free energies near to the low temperature 
fixed point (BF). Near to this fixed point, the re- 
cursion relations (3.2a, b) reduce to 

d~ -(~-l)/~-�89 (c.1) 
dI 

d/s = �89163 + ( d -  2)/~s ~ (C.2) 
dl 

If we integrate these recursion relations we obtain 

1 
K(I, K) = Ke (d- 1)~ + 2 ( ~ _  1) (1 _ e(d- t)~), (C.3) 

/~s(l, K, Ks) = K s e (~- 2) t + b 1 ( e(d- 1)z _ e(e- 2)z) 

+ b2(e(~- 2)~ _ 1) (C.4) 

( ) with b 1 : = �8 9  K-2(d l_ l )  and b2- -2(d_2)  ~ 1 )  

- 1 ) .  In order to obtain the large K behaviour of 
! 

the bulk free energy fB we use the asymptotic be- 
haviour g(/s +�89 This, together with (C.3) and 
(6.7a) yields 

fB(K)K~ood !d l  Ke (e-1)~ 

1 1~') +�89 + C(K) + ~ ( 1  - e  (a- 

=aK + C(K). (C.S) 
Thus C(K)= 0 is appropriate for K > K c. 
The corresponding asymptotic expression for the 
surface free energy fs is 

f~(K, Ks)~,KT ~ oo(d- 1)(Ks-�89 ) - �88 d ~ +  C,(K, Ks). 

(c.6) 
This is obtained when the asymptotic form 

G(/~,/~)~, xT~ | ( d -  1)(/s + �89 {(d-  1 ) / s  �89 (C.7) 

is inserted in (6.13a). 
Comparing (C.6) with the exact asymptotic limit 

d 
(6.14a) we conclude that Cs(K, Ks) = -�89 �88 d -  1 

is the correct choice. This is self-consistent since this 
value for C s also follows if we insert the exact asymp- 
totics for f~ into the definition (6.13b) of C~(K, Ks): 

l ime  -(d- a)~f~(/~(K,/),/s K, Ks)) 
1 ~ o o  

= lira e-(d-')~ { - �89 +(d - 1)(/s �89 
I ~ o o  

= - � 8 9  1 d (C.8) 
a d -  1 

where we used (C.3) and (C.4). 
Next, consider the behaviour near to the high tem- 
perature fixed point (P). In this case, the recursions 
(3.2a, b) reduce to 

dR 
= K In/~, (C.9) 

d/~s 
= K s  ln_~. (C.10) 
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Integrating (C.9) and (C.10) we obtain 

K(I, K) = exp(e I In K), (C. 11) 

Is K, Ks)=Is (C.12) 

In K s 
with x : -  In order to obtain the small K be- 

InK " 
haviour of the bulk free energy fB we need the 
asymptotic form g(R) , ,~ln2+R2({- lnR)  valid for 
small /(. If we insert this in (6.7a) with C(K)=0  we 
arrive at 

fB(K)K,-g~oln2+�89 (C.13) 

where 
e-Zt 

E~(z):= ~ dt t~ 
1 

is an exponential integral. If we use its asymptotm 
form [31] 

c--z 
E e ( z ) ~  - -  (C.14) 

z 

we obtain the high temperature limit (6.8b) of the 
bulk free energy. In order to derive the same limit 
for the surface free energy we use the small /s R s 
form of the kernel G(/~, Ks) in (6.13a) 

G(/~,/s "~ (d - 1) {/s189 - In Ks) - Rz( �89 In/~)} 
1 1 ~ 2  + ~ { J K  - K. 2(�89 In/~)} (C. 15) 

together with (C.11) and (C.12). This leads to 

3 

fs(g, go=llnKI a-~ ~ I , (K ,K)+C~(K,K s) (C.16) 
n = l  

with 

~ X in R) 

I2 := - ( d -  1) ~ dR 
/~2(�89 /~) 

o K [ln/s a ' 

K _ � 8 9 1 8 9  I ==�89 
o Kt ln /s  a 

In the above integrals we have changed variables 
from l to / s  ~lnK). The three integrals may 
be expressed by exponential integrals. Using the 
asymptotic expression (C.14) one arrives at 

[lnKla-tll,,,a(d-1)�89 l~lte -2 

[ln K] a-  ~ I2 ~ - ( d -  1) � 8 9  2 

i1 n f i e -  113 , , ,  1 K 2  (C.17) 

for K, K s ~ 0 .  The sum of these terms gives the 
correct high temperature limit (6.14b) of the surface 
free energy. 
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