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Effective field theory for interface delocalization transitions
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Semi-infinite systems are considered which give rise to a delocalization transition of the inter-
face between two coexisting phases. Since the interface position becomes a zero mode at the
transition, interface fluctuations invalidate mean-field theory for space dimension . An ef-
fective field-theoretic model for this zero mode is obtained via the collective-coordinate method.
Results for a simplified version of this model in and in are reported.

Recently, it has been found that interesting delo-
calization transitions can occur in semi-infinite sys-
tems with two coexisting phases.1-16 At these transi-
tions, the distance from the surface to the interface
separating the coexisting phases diverges. Such
behavior was first investigated in Ising-like systems1-9

and has been observed in several binary fluids.10,11

These transitions are usually referred to as wetting or
pinning transitions. More recently, it was predicted12

that such behavior can also occur when an ordered
and a disordered phase coexist. In this case, there
are additional critical surface phenomena12-15 which
apparently have been observed in the binary alloy
Cu3Au.14,16 These transitions are referred to as sur-
face induced disordering (SID) transitions.

Both wetting and SID have been investigated using
various methods. First, they have been discussed in
the framework of Landau or mean-field (MF)
theory1 , 6 , 8 , 1 2 - 1 4 where the mean interface position
was found to diverge logarithmically. Secondly, they
have been investigated for space dimension by
using solid-on-solid (SOS) models for the interface
coordinate.3-5 ,15 Here, a power-law divergence for
the mean interface position was found. In addition, a

dimensional field-theoretic SOS model has been
treated by renormalization-group methods.7

In this Communication, we show how one can
derive effective interface models starting from an ap-
propriate Ginzburg-Landau free-energy functional.
MF theory is obtained as a saddle-point or "zero-
loop" approximation. Expanding around the MF
solution, we observe that a zero mode emerges at the
delocalization transition. This zero mode is treated by
the collective-coordinate method and an effective in-
terface model is obtained. A simplified version of
this model is analyzed using transfer-matrix methods
for and a variational method for . These
results are discussed for SID. However, it is argued
that they also apply to the wetting transition if an ap-
propriate identification of the various scaling fields is
made.

Consider a dimensional semi-infinite system
described by the Ginzburg-Landau free-energy func-

tional

(1)

for the scalar field . is the coordinate per-
pendicular to the dimensional surface and

(1a)

(1b)

The MF theory for this model has been discussed
previously.12-14 For and

, critical surface phenomena occur.12 There
are two different types of transitions, namely,
for and for At both
and , the MF order-parameter profile

, has an interface at For
, this interface is delocalized since

The way in which goes to infinity is intimately relat-
ed to the way in which the surface order parameter

tends to zero, since asymptotically

(2)

where is the MF bulk order parameter for
One has to distinguish two cases. Firstly, consider

and infinitesimal . In this case,
with and at .12

Secondly, consider and infinitesimal positive
. Then, , with 13

(3a)

(3b)

MF theory neglects fluctuations in the local posi-
tion of the interface. In order to get some insight
into the effect of these configurational fluctuations,
one may expand around the MF profile:

(4)
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The Gaussian fluctuations are obtained if (4) is in-
serted into (1) and the resulting functional is expand-
ed up to second order in . As a consequence, one
is lead to consider the Schrödinger-type equation

(5)

where is a dimensional vector and

(5a)

The primes and the dots denote derivatives with
respect to and respectively. The eigenstates

have to fulfill the boundary condition

(6)

For infinitesimal or , the potential is al-
most flat apart from a well around For ,
the ground state becomes proportional to

and the corresponding energy tends to zero.
Thus, a zero mode emerges in this limit. Since the en-
ergies of the excited states are separated from by a
finite gap,17 the leading contribution to the surface
free energy from the Gaussian fluctuations is

(7)

A simple estimate of (7) may be obtained via a varia-
tional upper bound for . This leads to

(8)

for both at and at . For , one
finds

(9)

with both at and at . These
estimates of the "one-loop" contribution should be
compared with the MF or zero-loop contribution

for and for
. Thus, for , the Gaussian fluctuations

invalidate the results of Landau theory while is
obviously a boundary case.

From the above discussion, it follows that the
dominant fluctuations are due to the emerging zero
mode. In a different context, a zero mode has been
handled via the collective-coordinate method.18 As a
result, the drumhead model has been obtained.18,19

Here, we follow a similar strategy: We introduce the
collective coordinate via the ansatz

(10)

In terms of , the local interface position is given
by

(11)

where is the MF interface position [compare (2)].
If (10) is inserted into (1), a straightforward calcula-
tion yields

(12)
with the surface tension

(12a)

and

(12b)

(12c)

where is the MF value for the bulk order param-
eter. In this Communication, we focus attention on
the nongradient interaction term . There is no
a priori justification for ignoring the last term in (12)
since naive power counting indicates that the
gradient-interaction term is a marginal
operator (for ). However, the essential physics
obtained from the MF analysis of (1) is contained in

(see below). The influence of the term
will be discussed elsewhere.

We are particularly interested in the form of
near the transitions and , where
and . Therefore we expand in powers of

and , respectively. In the leading term of this
expansion, we transform from to the interface
position and insert the asymptotic
form (2) for In this way, we obtain

(13)

with . The effective free-energy func-
tional thus reduces to

(14)

where is given by (13) and a factor has
been absorbed in the field variable for convenience.
It should not be forgotten that, in principle, we still
have a restriction in (14). This is due to the
semi-infinite geometry of the original model (1)

. However, since the potential is very
repulsive for negative it appears permissible to ig-
nore this restriction.
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First, we apply MF theory to model (14) and deter-
mine from . It turns out that at
both and at all critical properties, which
have been obtained in the MF theory for the original
model (1),12,13 are recovered. This feature provides
some justification for the fact that we retained only
the leading terms of the expansion for in
powers of and

Next, consider . In this case, the field-
theoretic model defined by (13) and (14) is one-
dimensional and can be easily treated by transfer-
matrix methods.3 - 5 , 1 5 For , the delocalization
transition occurs at . For , it occurs
at a finite surface field . As a result, one obtains
for the surface free energy,

(15)

(16)

with , and . For the
mean distance of the interface from the surface,
one finds

(17)

(18)

with and . Note that only two of
the four surface exponents defined above are in-
dependent. This follows from general scaling con-
siderations discussed previously.13

Finally, we discuss (14) for using a varia-
tional method. This method has been applied previ-
ously to the roughening transition20 and to multilayer
adsorption.21,22 In this method, one introduces two
variational parameters and via the Gaussian
functional

(19)

and are determined self-consistently in such a
way that the difference between the free energy of
model (14) and the free energy of (19) becomes
minimal. As a result, we find

(20)

(21)

for both at and at . Thus the MF
results are recovered in this case. In contrast, for

and , an additional phase boundary
not present in MF theory is found. This new phase
boundary is given by a critical value of the param-
eter , where is the surface tension
(12a). At , , whereas at
. 2 3 As a consequence, the interface behaves dif-
ferently for large surface tension and for

small surface tension , since

(22)

(23)

whereas for . Thus an interface with a
large surface tension is pinned by a finite surface
field , while an interface with a small surface ten-
sion is delocalized even in the presence of a finite
The surface free energy is found to behave as

Note that an essential singularity similar to (25) has
been obtained previously.7 The surface exponent in
(24) is

The variational approach just described is equi-
valent to the leading term of a cumulant expansion
for the generating functional of vertex func-
tions. A full treatment of the problem requires an
investigation of the higher-order terms in the cumu-
lant expansion. This may be done using a field-
theoretic renormalization procedure similar to that
used in Ref. 7. Work in this direction is in prog-
ress.

At this point, it is appropriate to discuss the rela-
tionship of SID and wetting. It is shown in a
separate publication15 that both types of transitions
are closely related: is related to the critical wet-
ting transition (CW), whereas is related to the
wetting tricritical point. This relationship is most
clearly discussed in terms of the relevant scaling
fields. For instance, consider and CW. At
both transitions, there are two relevant scaling fields:
At one has the linear fields and

.13 At CW, one has and
where is the wetting transition temperature and
is the bulk magnetic field.8 It can be shown15 that
both transitions exhibit the same scaling behavior if
one makes the identification and . As
a consequence, one may translate all critical proper-
ties of into critical properties of CW and vice
versa. For example, the results (16) and (18) imply

and , which are just
the exact results of Abraham.2 In the present con-
text, the correspondence between SID and wetting
implies that the effective interface model (14) also

(24)

(25)
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applies for wetting provided one makes the above-
mentioned identification of the scaling fields.

Note added in proof. After the completion of this
work, we received a report of work prior to publica-
tion, by E. Brezin, B. Halperin, and S. Leibler, on
this subject restricted to
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