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Universality classes for the critical wetting transition in two dimensions 
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Universality classes and critical exponents for the wetting transition in two dimensions are deter- 
mined with the use of a continuum planar solid-on-solid model. Effective substrate potentials 
B U (  f) <0 falling off no slower than f 2 ,  where f is the distance from the substrate, are shown to 
lead to wetting transitions at finite potential strength B. For potentials which go to zero at least ex- 
ponentially fast with f, the interface free energy F, is analytic in the thermal scaling field t .  In the 
case of longer-range substrate potentials with a finite first moment, F, remains proportional to t 2  to 
leading order, but higher-order nonanalytic terms in t appear, while in the borderline case 

1 U (  f) 1 - f 2 ,  F, has an essential singularity at the wetting transition. For potentials going to zero 
more slowly than f 2 ,  there is no transition at finite B. It is shown that F, - B ' ^ / ' ' Â ¥ ~  for B-0+ for 
potentials asymptotically proportional to f * " ,  a < 0. 

I. INTRODUCTION 

Our understanding of multilayer adsorption phenomena 
on attractive substrates is based largely on the analysis of 
simple Ising lattice-gas models originally introduced by de 
Oliveira and ~riff i ths . '  These models exhibit a wide 
range of phenomena, including layering, roughening, and 
wetting, many of which have been observed experimental- 
ly, and are believed to yield a realistic picture of the sys- 
tematics of the surface phase diagramsS2 In particular, 
lattice-gas models should provide a good framework for 
investigating the so-called critical wetting transition, 
where the thickness of the adsorbed film diverges and the 
adsorbate-gas interface becomes diffuse. 

However, analysis of even these relatively simple 
lattice-gas models beyond mean-field theory has proven to 
be very difficult, and it has been found useful to consider 
a simpler, closely related class of models based on the 
Onsager-Temperley sheet, or solid-on-solid (SOS) approxi- 
mation. The SOS approximation provides a way of focus- 
ing attention on the interface fluctuations, which play the 
crucial role in adsorption phenomena, while ignoring ir- 
relevant bulk fluctuations. The resulting models consist 
of a structureless (i.e., zero width) adsorbate-gas interface 
bound to a flat surface (the substrate) by a potential well. 
The wetting transition corresponds to the thermal unbind- 
ing of the interface from the well. For short-range poten- 
tials these models have proven to be remarkably successful 
in treating the wetting transition and have been found in 
fact to yield the correct critical singularities in two bulk 
dimensions (d  = 2).3,4 

Even for d =2, however, no attention has been paid to 
long-range potentials and in particular, no attempt has 
been made to determine universality classes as a function 
of the range of the interaction potential. This is an impor- 
tant point; in the wetting problem the adatom-adatom and 
the adatom-substrate interaction is generally of the van 
der Waals type. This implies long-range tails in the 
lattice-gas interaction potentials. These long-range tails 

may well alter the form of the critical singularities at the 
wetting transition. 

In this paper we investigate this problem for d = 2. The 
Hamiltonian we consider is given by 

where f (x )  1 denotes the perpendicular distance of the 
interface from point x on the substrate, located at f = 1. 
The energy contribution from the first term in (1) is pro- 
portional to the extra length of an interface which is not 
flat. The second term is the potential well, which local- 
izes the interface below the transition temperature. In the 
last term h is proportional to p -h, the difference of the 
chemical potential of the adatom gas from its value at 
coexistence. In lattice-gas terms, this term is the bulk 
field. The critical wetting transition occurs at coexistence, 
i.e., h =O. 

The potential U( f )  in (1) is given by the local free- 
energy density of a rigid interface located a distance f 
from the substrate in the original lattice-gas model. At 
T =0, U (  f )  can be evaluated exactly.' In the case of 
strong substrate potentials for which there is complete 
wetting at coexistence at T =0, U( f) is positive. Equa- 
tion (1) then implies complete wetting for all finite B. In 
the more interesting case of intermediate substrate poten- 
tial strengths, U( f ) can be negative.2 Generally, when a 
mean-field analysis of the original lattice-gas model 
predicts a state with finite coverage at coexistence, U( f) 
will be negative with a minimum at finite f. This is the 
case we consider here. In particular, we parametrize the 
large- f behavior as 

van der Waals interactions in d =2  correspond then to 
a = l .  

In Sec. 11, after briefly discussing the transfer-matrix 
method in one dimension, the classes of potentials 
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U( f )  <,0 which lead to wetting transitions at finite B =B* 
are characterized and discussed. First, in order to make 
explicit the scaling behavior of the interface free-energy 
density F, at the critical wetting transition, results for the 
square-well potential 

are reviewed. Next, it is shown in general that potentials 
U(  f ) <0 with a finite first moment 

have a wetting transition at finite B =B*. In this case a 
perturbative method is used to determine the dependence 
of F, on the thermal scaling field 8B =B -B* > 0. It is 
shown that if 

flmeaf 1 U(f)  ldf < a 

for some a > 0, F, is analytic in 8B, while if 

for some n > 1, some derivations of Fs diverge as the wet- 
ting transition is approached from below (8B-O+). Po- 
tentials asymptotically proportional to f - are considered 
next. Taking U(  f )=  - f it is possible to obtain an ex- 
act solution, and we find that 

at the wetting transition. The transition is quite unusual 
in this case in that an infinite number of bound states 
breaks off from the continuum spectrum of the transfer 
matrix simultaneously at the transition. 

Potentials which drop off asymptotically more slowly 
than f -' are considered in Sec. 111. It is shown that the 
interface is bound to the substrate for all B > 0 in this case 
so that no wetting transition occurs. Further, we show 
that for 

1 U ( f ) \  ~ f - ~ - " ,  a < 0  

we have 

F, - B ~ ^ " ^  for B-O+ . 
In particular, for 1 a 1 = 3 [ U (f 1 - f]  this result yields the 
dependence of F, on the bulk field h ( =Â£ 

F S - h 2 ^ ,  

a result obtained by other methods in Sec. 11, 

11. CRITICAL WETTING TRANSITION 

A. Square-well substrate potentials and scaling behavior 

For d =2, the partition function for (1) is rather easy to 
evaluate using transfer-matrix methods. In particular, the 
transfer-matrix technique allows us to replace the func- 

tional integration by an eigenvalue problem. In this one- 
dimensional case the eigenvalue problem can be reduced to 
a one-particle quantum-mechanical problem. This ap- 
proach has been discussed by several authors and is simply 
related to Feynman's path-integral formulation of quan- 
tum 

For the present problem, the interface free-energy densi- 
ty F, is given in the thermodynamic limit by the lowest- 
energy eigenvalue of the Schrodinger equation 

where B = ( ~ ~ T ) '  and f >.\. Denoting the ground-state 
solution by subscript 0, we have 

F, =En (4) 

and furthermore, 

At  h =0, the existence of a bound-state solution (En  < 0 )  
to (3) means that ( f )  is finite, i.e., that the interface is lo- 
calized and that we have finite coverage. When the bound 
state ceases to exist, En-0 and (f ) Ã‘ cc , signaling the 
critical wetting transition. 

For the potential (2) the behavior near the critical wet- 
ting transition is easily determined in closed form. For 
h =0 and B =B* we find E n = O  for 

Deviations from the critical point are given by t ,  h, and 8B 
(all greater than 01, where t =@flu and 85 =B -B*. In 
fact, direct calculation shows that4 

where the scaling function H has the properties 
H(O)=const and 

Thus F,-t2 for h = 0  and F,-h2I3 for t = 0 .  As can al- 
ready be seen directly from (3), 8B is a so-called nonorder- 
ing field and 

is a nonordering density. In other words, 85 has the 
same scaling dimension as t .  Generally, the interface 
free-energy density F, has the scaling form 

and the exponent governing the behavior of m ,  - t s  is 
called 13,' In the present case we therefore have as = 0  
and A=3, and since /?, =2-as -A, /?, = - 1. For the 
singular part of the nonordering density m - t i  we ob- 
tain Dl = 1 -a, = 1, and similarly 
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implying y l l  =0  for h =O. Other exponents follow by dif- 
ferentiation and various scaling relations can be derived in 
the usual manner. 

There are thus two independent exponents, a, and A, 
and in general they may both be determined by consider- 
ing (3) with h =0  if we determine both the ground-state 
energy E n  and the asymptotic behavior of the correspond- 
ing wave function ^(f). a, is determined by (4) and &, 
and therefore A is determined by (5). This is the approach 
we shall apply here. 

B. General substrate potentials with finite first moment 

For general U, it is not possible to solve Eq. (3) explicit- 
ly. However, general properties of the spectrum and the 
dependence of the lowest eigenvalue on t can be deter- 
mined as follows. Equation (3) has the generic form 

where K'- -En and x = f > 1. We are interested in the 
ground-state solution to (61, and in particular how K'-0 
as 8 5  +Q+, where 8 5  =B - B* and K'(B* ) =o. To lowest 
order, SB is equivalent to the thermal scaling field t .  (The 
factor 2p2 has been adsorbed in B.) 

Utilizing the boundary condition <A(1)=0, (6) can be 
rewritten as a Fredholm integral equation8 

i f i ( x ) = ~ f Â ¡ ~ ; x , y  1 u ( y )  1 i}i(y)dy , (7) 

where the Green's function 

is the finite solution of 

with boundary condition G ( 1,y) =O. Defining 
x 1 U(x)  1 l'^&x), (7) reduces to a Fredholm equation 
with symmetric kernel K (x,y): 

Q ( X ) = B  f " ~ ( ~ , y ~ y ) d y  , (9) 

The trace of the integral operator on the right-hand side 
of (9) is given by8 

Since 

for all K > 0, the trace is bounded by 

f"x 1 W x )  \ dx , 

independent of K. If this integral is finite, the integral 

operator in (9) is trace class, and it follows immediately 
that (9) has a real, discrete, infinite spectrum 
0 < Bo < Bl  < . - - (the operator is positive) with a point of 
accumulation at B 1 = O .  Each eigenvalue has finite mul- 
tiplicity and the eigenvectors { $,, l ,  n =0, l, . . . , cc form 
a complete orthonormal basis on [I ,  ).9910 In fact, in the 
present case we know further that the eigenvalues are not 
degenerate1' This can be seen most easily by considering 
(7). Let A l  and 4-> be two eigenfunctions corresponding to 
an eigenvalue B. A straightforward calculation utilizing 
(6) and (7) shows that 

or equivalently <(>,<f>; -(b\<b->==const, where primes denote 
derivatives with respect to x. However, d > \ (  1 =&( 1 ) =O 
so that the constant is zero. It follows that is propor- 
tional to <A2. 

For potentials asymptotically proportional to x-2-a, 
the above results hold for a > 0. It is important that the 
bound leading to the requirement 

f "x I U(x)  ldx finite (10) 

is independent of K since we are interested in the behavior 
of the spectrum in the K+O limit. In particular, since the 
above results hold for K = O ,  we see that the wetting transi- 
tion occurs at B =B*=Bo (K=O). For B < B o  ( K = O )  
there is no bound state in the transfer-matrix spectrum for 
any K 2 0. At B =B* the first bound state appears, and 
for B > B* this state is at finite K. Furthermore, as noted 
above, this state is not degenerate. 

In order to determine the behavior of thermodvnamic 
quantities at the transition, we need the dependence of K' 

on 6 5  = B - B* > 0. To do this we use a perturbative ap- 
proach, expanding about the K = 0 state at B ==B*. For 
K > 0, the solution 44x1 to Eq. (6 )  is proportional to e ' K x  

as x- CC. Writing <p (~ )= :e{x )e -~~ ,  0(x)  satisfies the 
equation 

or, choosing a normalization 0(x)-+ 1 for x -+ cc , the Vol- 
terra equation 

From the above results it follows that this eigenvalue 
problem has a complete set of orthonormal eigenfunctions 
with weight function 1 U(x) \ and corresponding eigen- 
values B.(K). In particular, this is true for K=O, and 
B o ( ~ = O )  is the critical potential strength for the wetting 
transition. If 1 U(x) 1 = x 2 " ,  the eigenfunctions for 
K = O  can be determined explicitly.12 Denoting the K=O 
eigenfunctions by un, n =0,1, . . . , cc and the K = O  eigen- 
values by Bn, we have 

where JlIa is a Bessel function of order l /a.  The eigen- 
values Bn are determined by J,/a[2(Bn )1'2/a] =O. For de- 
creasing a, By is a monotonically decreasing function such 



5276 D. M. KROLL AND R. LIPOWSKY 

that B~-++ for a-0"'". 
Now let B =B*+6B [ B * = B o ( ~ = O ) ]  and consider K 

and SB infinitesimal. To lowest order in 8 5  and K ,  ( 1  1 )  
can be rewritten as 

O x  1 +B* f "dy (Y - x )U(y )O(y )+F(x l  , (12) 

where 

F ( x ) = ~ B [ ~ ~ ( x ) -  l ] / B *  

x U(y)OO(y)dy , 
and On(x) is the solution of ( 1  1 )  for K=O and 
B = B o ( ~ = O ) = B * .  Expand 6 ( x )  in the set fun ] of K=O 
eigenfunctions: 

m 

o h ) =  2 Q ~ u ~ ( x )  . 
n =o 

Recalling that 0(  w = 1 ,  
rn 

1= ~ a n u n i i f . )  (13) 
n =o 

so that (12) leads to the equation 
00 

0= 2 a n ( l  -BS/Bn)[un(oo ) - u n ( x ) ] + F ( x )  . (14) 
n=l 

Multiplying (14) by 1 U ( x )  1 u o ( x )  and integrating from 1 
to w we obtain 

where 
m 

y =  z a n ( l - B * / B n ) u n (  if.) . 
n=1 

Multiplying (14) by 1 U ( x )  \ u k ( x ) ,  k#O, and integrating 
we get 

Â¥ j m d X  1 U ( X )  \ tLk(x)-ak(1-B*/Bk)  

Since un(l )=O,  (14) implies y+F( l )=O.  Equation (15a) 
therefore becomes 

We use (15a') to determine K(&B).  Equation (15b') can 
then be used to determine uk for k 1, and a n  can then be 

I 

determined from ( 1  3). 
Integrating by parts, (15a') reduces to 

where 

This implies 

First assume that 

U l x )  ldx  < m 

for some a > 0. This implies that U ( x )  goes to zero at 
least exponentially fast for x + m .  In this case the ex- 
ponential e - 2 K ( Y - x )  can be expanded and all resulting in- 
tegrals (to all orders in K )  converge because of  the cutoff 
provided by U ( x ) .  It follows that 

or, inverting, 
m 

K= 2 cn6Bn 
n=1 

so that K and therefore F, is analytic in 5B (or the thermal 
scaling field t ) .  Assume now that 

x I U ( x )  1 d x  < if. 

but 

j l m x n + l  1 U ( x )  \ dx = if. 

for some n 1 .  Restricting attention to the class of poten- 
tials for which 1 U ( x )  \ - x 2 "  for large x, the above as- 
sumption implies n - 1 < a < n. To see what happens in 
this case consider first n = 1 ,  0 < a  < 1 and rewrite the 
right-hand side of (16) as 

K U ~ C O ) + B * ~ ~ ~ X  ~ ' ( , ( x ) f ~ d y [ e - ~ ~ ( ~ - ~ ' + 2 ~ ( ~  - X I - l ]  

We break up the remaining integral into parts by choosing 
a constant c, independent of K ,  such that Oo(x) ss 00( m ) = 1 
for x > c. Defining 

Y ( x  7Y ) -e-2K("-x '+2~(y  - - x ) - 1  , 

we write the integral as 

The first integral has an analytic expansion in K ,  starting with K'. The second and third integrals are not analytic in K .  

The leading K dependence in these two integrals is the same and can be determined as follows. Taking 1 U ( x )  1 - x  - 2 - 4  
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for x > c and defining z = ~ ( y  -x), 

For 0 < a  < 1 we can take the limit K-0 in the integral. 
The resulting contribution is proportional to K^". The 
third integral can be handled in a similar fashion. Col- 
lecting results we have 

or, inverting, 

implying 

The leading term in F, is still t2, but the next-to-leading 
term, t2'^", is not analytic in t. For a = l ,  a similar 
analysis yields 

and a free energy 

so that the next-to-leading term contains a logarithmic 
correction. 

For general a > 0 the analysis is similar and one finds 

for noninteger a, where [ n ]  is the largest integer smaller 
than a, and 

a - I 
Fs= 2 d n t 2 + n + d a t 2 + a  1 lnt I + . . . (19) 

n =o 

for integer a. 
The leading term in the free-energy density F, is there- 

fore t2  for all potentials U(x )<0  such that (10) is ful- 
filled.14 Furthermore, for potentials such that (17) holds, 
Fs is analytic in t, while if (17) is not fulfilled, Fs is not 
analytic in t and some derivatives of F, will diverge at the 
wetting transition. In particular, for the physically 
relevant class of potentials 1 U(x) 1 - x 2 - a  ,x -+ OC , Fs is 
given by (1 8) or (1 9) depending upon whether a > 0 is an 
integer or not. 

Since the ground-state wave function is proportional to 
- K X  for x+ cc for all potentials satisfying (lo), the lead- 

ing divergence of ms is given by K ' .  ms therefore has the 
asymptotic divergence t -' for all potentials in this class, 
but there exist in general nonanalytic correction terms 
given by the above analysis. 

Finally, we note that at and above the wetting transition 
F, - h 2/3 for all a > 0. This is understandable since in this 
case the asymptotic behavior of the wave function is 
determined by the magnetic field term, regardless of the 

I 
form of the substrate potential. 

These results characterize the wetting transition for po- 
tentials which drop off faster than x at large distances. 
In the next section it is shown that there is no wetting 
transition for potentials which drop off more slowly than 
x 2 .  In this case the interface remains pinned to the sub- 
strate at all finite temperatures. Potentials asymptotically 
proportional to x are a borderline case. There is also a 
wetting transition, but of a very different nature than that 
described above. 

For U (x)  = - x  2 ,  Eq. (6)  can be solved explicitly.15 A 
bound-state solution 

exists for B > B* = +, where KiA is a modified Bessel func- 
tion of imaginary order i/. and = ( B  - B* For small 
argument, 

so that the boundary condition d>( 1 )=0 implies 

A l n ( ~ / 2 ) =  - n r  

where n is a positive integer. In contrast to the previously 
studied cases, infinitely-many bound states break off from 
the continuum simultaneously at the wetting transition. 
These bound states form a point spectrum with a point of 
accumulation at zero. The interface free energy Fs now 
has an essential singularity16 

at the wetting transition and since 4 (x )  -e K x  for x Ã‘ m , 
m, diverges as 

111. LONG-RANGE POTENTIALS 
AND PINNING FIELDS 

Potentials which drop off more slowly than for 
large x have sufficiently long tails to pin the interface for 
all finite values of B. This is proven below for the re- 
stricted class of potentials asymptotically proportional to 

-2-a , a < 0. It is also shown that 

F , - B ~ / I ~  I 

for B-0+ in this case. This restriction on the form of 
the potential is in no way necessary; however, the physi- 
cally interesting potentials are of this form and it is 
straightforward to extend the analysis to other potentials. 
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First, we consider potentials with - 2  < a  < 0  so that 
U(x)- ,O for x  + CG. Both uprer and lower bounds are 
constructed which show that the ground-state energy K' 

satisfies 

in this case. Next we consider pinning fields 
U ( x )  - x  l a  1 with 1 a 1 > 2.  In this case the bound-state 
energy eigenvalues E are positive, and using similar 
methods we again find that the ground-energy eigenvalue 

In both cases the coverage m, diverges as 

for B-+O+. 

In order to obtain an upper bound on the ground-state 
energy (a lower bound on K ~ ) ,  we consider the mini-max 
problem equivalent to (6) (Refs. 8 and 11) 

where & x )  belongs to the space of continuous functions 
such that $ ( l ) = O  and (b(x}Ã‘r for x - x .  Since 
# x ) - e K x  for X - + C O ,  a suitable choice of trial wave 
function for (20)  is 

Utilizing $ T  in (20)  we have 

To  leading order in ti3 

where C , ,  C 2 ,  and C 3  are finite positive constants. Equa- 
tion (20)  therefore becomes 

For a  2 0  the bound is not useful, but for a  < 0  we obtain 

with Ci positive and finite. The ground-state energy -ti2 

is thus bounded from above by a finite negative number 
for all finite B so that the interface remains pinned to the 
substrate for all B > 0 .  

A lower bound can be obtained with the use of the iden- 
tity17'18 

Assume that 4 ( x )  is a solution for some ( K , B ) .  Equation 
(20)  then holds as an equality. Utilizing (21)  we obtain 

f ^ d x  ifi2(x)( - x  -'+-4Bx 
K 2  < 

4 J I m d x  i,b2 

niax( - x T 2 + 4 n x  - 2 - a ) / 4  . 

The maximum occurs for a  < 0  at 
B - :  

x ^ a l = -  
2 ( 2 + a )  

so that 

t i2< 1 a  1 [ 2 ( 2 + a ) ] - 1 - 2 ' 0 ~ 2 / l a  1 . 

Since both the upper and lower bounds have the same B 
dependence, it follows that 

F. - B W O  I 

for B-O+ and - 2  < a  < 0 .  Similar arguments show 
furthermore that 

in this case. 

The same methods applied in Sec. I11 A can 
here. Since U ( x ) > 0 ,  the energy eigenvalues 
positive so that ( 6 )  takes the form 

$"+Ed)-Bd)x l a  I - 2 = ~  

or equivalently, 

be utilized 
of ( 3 )  are 

(22) 

(23)  

for solutions 4 x 1  of (22) .  An upper bound on En, the 
ground-state energy, can be obtained using the mini-max 
principle based on (23) .  Thus 

for general continuous functions $ ( x )  such that $ ( 1 ) = 0  
and $ ( x ) - + O  for X-PCO.  Noting that the asymptotic 
behavior of a solution d>(x'i to (22)  is 

$ ( X I - e x p ( - y x  l a  112) , 

with y - 16, a suitable choice of trial wave function is 

Employing this choice with y - v<B, we find to leading 
order in y 

where Cs, is a positive constant. 
Similarly, a lower bound can be obtained utilizing (21)  

and (23)  as in the previous section (IIIA). One finds that 
the functional dependence of the upper bound is again 
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1 so that 

for B-0^ and a < -2. Similarly, m, again diverges as 
B-'/Ia 1. For a bulk magnetic field h, a = -3 so that 
F, - h 2/3 and m, - h ' I 3  above the wetting temperature 
for h+O+. These results agree with those of Sec. I1 ob- 
tained with the use of other methods. 

IV. CONCLUSIONS 

Utilizing the SOS Hamiltonian (1) for a one- 
dimensional interface, we have investigated wetting transi- 
tions for various classes of substrate potentials U(x).  Po- 
tentials U(x)  <0 with a finite first moment 

f m x  I U(x)  \ d x  

have been found to lead to transitions at finite potential 
strength B. For short-range potentials satisfying (17) the 
interface free-energy density F, is analytic in t. However, 
longer-range potentials lead to nonanalyticities in F,. The 
leading term in F, is still t2, but the higher-order terms 
are changed. In particular, for 1 U(x)  1 - x -~- '  x -00 ,  
F, is given by (18) or (19) depending upon whether a is an 
integer or not. Thus, considering only the leading t depen- 
dence of F,, one would again have a, =0  and A = 3 as in 
the case of short-range potentials (2). However, the non- 
analytic terms could, in certain situations, be observable. 
For example, for van der Waals interactions in d =2, 
U ( x ) -  - x p 3  so that 

The specific heat has a discontinuity at the wetting tem- 
perature TR and a leading nonanalytic temperature depen- 
d e n t  Ilnt 1 for T $ T R .  

The wetting transition for ~ ( x ) = - x ~  is special. 
This is the longest-range substrate potential which leads to 
a wetting transition at finite B. Furthermore, the behavior 
of the transfer-matrix spectrum and the thermodynamic 
singularities are drastically different in this case. Whereas 
the wetting transition is caused by one bound state break- 

ing off from the continuum spectrum of the transfer ma- 
trix in the case of shorter-range substrate potentials, here 
an infinite number break off simultaneously at the transi- 
tion. This infinite-point spectrum has a point of accumu- 
lation at zero. Furthermore, the behavior of F, and the 
coverage m, are completely different; both have an essen- 
tial singularity as discussed in Sec. 11. 

Finally, potentials and pinning fields of the form 
1 U(x)  1 -x -2-a with a <O were investigated and it was 

shown that the interface remains pinned to the substrate 
for all finite potential strengths. Furthermore, it was 
found that 

and 

for both - 2 < a < 0 and a < - 2, implying the critical ex- 
ponents a s=2 -2 / [  a 1 and A = 3 /  a 1 .  

These last results are of particular interest in light of re- 
cent work on pinning transitions in d =3  for short-range 
pinning p0tent ia1s. l~~'  There, effective field theories for 
interface delocalization transitions were derived. In these 
models the dynamic variable is the local interface height, 
just as in (1). Preliminary results show that at least two 
types of transitions are possible. For large surface ten- 
sions, the transition remains of mean-field type, albeit 
with renormalized exponents. This corresponds essential- 
ly to a transition in (1) for B-+O+. Here something simi- 
lar happens for long-range potentials: The fluctuations 
are not strong enough to cause a transition at finite poten- 
tial strength, but there are new fluctuation-induced singu- 
larities for B+0. On the other hand, for small surface 
tension, a new fluctuation-induced mechanism was found. 
In the present context this corresponds to a transition at 
finite potential strength B. 
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