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Upper Critical Dimension for Wetting in Systems with Long-Range Forces
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It is shown that the upper critical dimension for complete wetting is for short-

range forces and for long-range forces. The critical exponent for the divergence of

transverse correlations at complete wetting in three-dimensional systems is found to be

for short-range forces and for long-range forces of van der Waals type.

PACS numbers: 68.10.Cr, 64.10. + h, 68.55. + b

Much recent work, both theoretical
1 - 1 3

 and ex-

perimental,
1 4 - 1 6

 has been devoted to the study of

wetting transitions. At such transitions, a liquid

film is adsorbed on a substrate surface leading to an

interface between the adsorbed liquid phase and the
gas phase in the bulk. The interplay between the

substrate surface and the liquid-gas interface can
lead to critical phenomena since the mean distance

of the interface from the surface can diverge in a
continuous manner. Such interface delocalization

occurs both at complete and at critical wetting as

the bulk coexistence curve is approached. At criti-

cal wetting, the interface becomes also delocalized

as bulk or surface parameters are varied while the

system is at coexistence. Complete wetting has

been observed in several experiments.
1 4 - 1 6

 So far,

there is no experimental evidence for critical wet-

ting.
Theoretically, two types of models have been

studied in order to elucidate the critical properties

at the wetting transitions: (1) discrete and continu-

ous models for the liquid-gas densi ty ,
1 - 4 , 6 - 8

 and

(2) effective solid-on-solid (SOS) models for the

interface between the liquid and the gas
phases.

5,9 -13
 In the first type of model, the density

profile has been calculated by mean-field (MF) ap-

proximations which underestimate the effects of in-
terface fluctuations, i.e., capillary waves. In the

SOS model, one focuses attention on these capillary

waves.
The interface fluctuations do not necessarily in-

validate the results of MF theory. This happens
only for space dimension where is the

upper-critical dimension for the transition. For

, MF theory should yield the correct critical
singularities. It has been shown recently

7,9
 that

for critical wetting and short-range interac-

tions. In this Letter, the upper critical dimension is
obtained for complete wetting in systems with

short-range and with long-range forces. Some re-
marks on critical wetting in systems with long-range

forces are also included.

For temperatures above the roughening tempera-

ture, the correlation length for transverse corre-

lations diverges at complete wetting as

where denotes the deviation of the
bulk chemical potential from its value at coex-

istence. It is shown below that for three-

dimensional systems with short-range forces and
for three-dimensional systems with long-

range forces of van der Waals type. The correlation
length should show up in the diffuse scattering

of light from the interfacial region. Thus, the sur-

face exponent may also be determined experi-
mentally.

(1) Complete wetting and short-range forces.—In

this case, the transition can be described by a
Landau-Ginzburg (LG) potential for the den-

sity with two almost degenerate minima. One

minimum corresponds to the gas phase with density
, the other to the liquid phase with

The difference which denotes
the deviation of the bulk chemical potential from its

value at coexistence. The mean-field (MF) approx-
imation for the density profile is obtained

from . is the coordinate perpen-

dicular to the surface. For special potentials ,

the MF profile can be obtained analytically in
closed form.

8
 On the other hand, one can show

that the critical properties at complete wetting do

not depend on the details of . As long as the

minima of have a finite curvature correspond-
ing to finite bulk correlation lengths, and as long as

, the critical properties remain

unchanged: One finds that the mean interface posi-

tion diverges as and the MF surface

free energy has a singular part
.

4,8
 If the critical exponents and are

defined via and , their MF

values are (logarithmic) and .
17

The capillary waves show up as a soft mode in the

Gaussian fluctuations around the MF profile

 In order to characterize these fluctua-
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VOLUME 52, NUMBER 16 PHYSICAL R E V I E W LETTERS 16 APRIL 1984

tions, one has to consider an eigenvalue problem
which has the form of a Schrödinger-type equation.

The soft mode corresponds to the ground state with
"energy" . For a large class of LG potentials

, upper and lower bounds for can be

found
18

 which show that goes continuously to

zero at complete wetting as . The upper
bound is obtained by a variational method, the

lower bound by means of Temple's inequality.
1 9

 A
detailed account of these bounds wil l be given else-

where.
18

Because of the soft mode, the Gaussian fluctua-

tions give a singular contribution to the surface

free energy. If one compares with the MF con-

tribution , one finds
18

 that is more singular
than for , and less singular for . As

a consequence, the upper critical dimension is

for complete wetting and short-range interac-

tions.
Thus, for short-range forces, both for criti-

cal and for complete wetting.
2 0 A priori, this is not

to be expected since complete and critical wetting

are two different types of surface criticality. At

complete wetting, is the only relevant scaling

field.
4,21

 In contrast, there are two such fields at

critical wetting.
4 , 6 , 1 1

 Note, for comparison, that

different types of bulk criticality usually lead to dif-

ferent values for . For instance, for a criti-
cal bulk transition, and for a bulk tricritical

point.

The upper critical dimension just derived

can be obtained more easily in the framework of an

appropriate SOS model for the local interface posi-
tion which has the generic form

(1)

where are the coordinates parallel to the
substrate surface at . Since the interface can-

not penetrate this surface, should contain a

hard wall, i.e.,

(2)

For short-range forces, the expression

(3)

has been obtained by field-theoretic methods start-

ing from the above mentioned LG model for .
7 , 9

As before, measures the distance from bulk
coexistence. is proportional to the MF deviation

from the critical wetting line inside the coexistence

surface and is as parameter which contains the

surface tension of the interface.

For the model described by (1)-(3), critical wet-
ting occurs for and from below with

the critical coupling . Complete wetting oc-

curs for and . The MF value for

the critical coupling is . For , has
a minimum at a finite value even in the presence

of a hard-wall potential at . In MF theory, this

minimum determines the mean interface position

via , the correlation length for

transverse correlations parallel to the surface by

, and the surface free energy

. For (3) with , one easily finds in

this way , with , and

which implies . The upper crit-

ical dimension is now obtained in the usual

way
22

 when the mean-field values and

are inserted into the hyperscaling relation

Note that is predicted to diverge at complete

wetting with the critical exponent . The MF

value found above should be correct for

. On the other hand, if one includes the

effect of capillary waves by the methods described
in Refs. 5, 9, and 10, one finds that holds

also for
It has been realized before by numerical investi-

gations of the van der Waals integral theory for

fluids that the transverse correlations diverge at
complete wetting.

2 , 3
 However, the nature of this

divergence has not been determined. In Fig. 11 of

Ref. 3, as obtained from the numerical work was

plotted as a function of . Presumably, this

was motivated by the logarithmic divergence of

However, this plot clearly shows that does not
diverge logarithmically. On the other hand, if one

takes these numerical data and plots as a

function of , one finds a straight line with a

slope . Thus, the numerical investigations

of the van der Waals integral theory yield in

accordance with the MF result derived above from
the SOS model, Eqs. (1)-(3).

(2) Complete wetting and long-range forces.—In

this case, an appropriate SOS mode is defined by
(1), (2), and

1 1 , 1 3

(4)

with . For and , the MF
approximation gives

(5a)

(5b)

(5c)
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at complete wetting. The divergence (5a) of the

mean interface position has been obtained previ-

ously in the context of lattice gas models.
1
 As far

as I know, (5b) and (5c) have not been derived be-

fore. Note that the scaling relation

which is valid for short-range forces
4
 also holds in

this case for arbitrary . If one inserts the mean-
field values for and as given by (5b) and (5c)

into the hyperscaling relation, one obtains the
upper critical dimension

(6)

for complete wetting in systems with long-range

forces. Note that for short-range forces is

recovered from (6) in the limit . For finite ,
, i.e., the upper critical dimension is re-

duced by longer-ranged forces. Such a reduction is

well known in the context of bulk critical phenome-

na. In addition, a nontrivial test of (6) can be ob-

tained for . In this case, the field theory de-

fined by (1), (2), and (4) can be solved exactly by

transfer-matrix methods. One finds
23

 that

for , and for
. Thus, the MF result for is recovered for

in as predicted by (6).
24

From a physical point of view, the most interest-

ing case is which corresponds to three-
dimensional systems with van der Waals forces.

1,13

From (6), one finds . Thus, MF

theory should be valid for and . As a
consequence, such systems should exhibit a diverg-

ing correlation length at complete

wetting with from (5b). It would be in-

teresting to see whether this value for can also

be obtained by the van der Waals integral theory for

fluids.

(3) Critical wetting and long-range forces.—In or-
der to apply MF theory to the SOS model (1), (2),

and (4) with , one has to replace the hard

wall at in (2) by a smooth repulsive potential.
A priori it is not clear what dependence such a

repulsive potential should have. For short-range

forces, an exponential dependence has been
derived in a systematic way starting from the LG

model for the fluid density.
7,9

 For long-range
forces, an exponential dependence can also be ob-

tained if one starts from a LG model for the density

where the long-range interactions in the fluid enter
only indirectly via a contribution to the effective
substrate potential [cf. Eq. (10) of Ref. 1]. This ap-

proximation leads to
23

(7)

at bulk coexistence. In MF theory, a critical transi-

tion can only occur for . As ,

the MF singularities obtained from (7) are
, and with

. This implies the upper criti-

cal dimension

(8)

for the critical transition of (7).
Note that (3), (4), and (7) may be combined in

order to study wetting in the extended
phase diagram. It then becomes apparent that,
within MF theory, the critical transition in systems

with long-range substrate potentials corresponds to
the complete transition in systems with short-range
potentials.

23

In , exact results show that is a boun-

dary value also for the critical transition: For ,

the critical coupling has its MF value ,

whereas for  .
11
 is rather special

since the surface free energy has an essential singu-
larity.

1 1 , 1 3
 Although these results have been ob-

tained for a hard wall they should also hold for (7).

This seems to indicate that the critical transition is
described by MF theory for in . On the

other hand, the hyperscaling relation holds for all

values of since and . This implies

. In addition, the scaling dimension of

is and in for

and , respectively, whereas from

MF theory applied to (7). Thus, the exact results
in imply which is consistent with

(8).
As long as , a critical wetting transition can-

not occur at a finite temperature.
13

 For short-range
forces , capillary waves can shift the phase

boundary in from its MF value to
as shown in Ref. 9. For long-range forces

and (7) with , such a shift is not to be expect-
ed since even in . In addition, the
results of Ref. 13 indicate that capillary waves do

not change for the SOS model (7) and arbi-
trary in . On the other hand, it is not known

how (7) is modified if one starts from a more realis-

tic model for the fluid density. More work in this
direction seems to be called for. This may also shed
some light on the contradictory results for critical

wetting obtained by Teletzke, Scriven, and Davis
25

and Tarazona and Evans
26

 for
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