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Interface depinning transitions such as wet1ing;'are described where the surface layer becomes crilical as 
the interface unbinds from the wall. As a cor sequence, there are two different types of fluctuations, name- 
ly, capillary waves and critical fluctuations wit iin the surface layer, which are shown to be governed by two 
different length scales. 

Interface depinning tra~nsitions such as wetting havs at- 
tracted much recent i n t e r e ~ t . l - ~ - ~ ' ~  Such transitions arise at 
the coexistence curve of several bulk phases if a surface or 
wall prefers one of these phases and tries to repel the oth- 
ers. At wetting: the substrate surface attracts the adatoms 
and thus prefers the high-density phase (liquid) to the low- 
density one (gas). At surface-induced di~order ,~ the surface 
prefers the disordered phase even in the presence of a i  or- 
dered bulk, since its elffective dimensionality, and thus its 
tendency to order, is reduced compared to the bulk. 

Due to the choosy surface, an interface appears in the 
semi-infinite system which separates the surface layer from 
the bulk phase. Under suitable conditions, this interface 
unbinds from the wall in a continuous manner. As a con2e- 
quence, various critical effects occur:3 (1) the thickness 1 of 
the surface layer diverges; (2) local surface quantities such 
as the surface-order parameter behave continuously or 
diverge; (3) long-range correlations build up parallel to the 
interface, and the interfacial width diverges for d =Â 3. The 
effects (1) and (2) are unique to depinning whereas effect 
(3) also occurs for a liquid-vapor interface in a weak gravi- 
tational field? The critical behavior just described can be 
characterized by critical exponents. Various theoretical 
methods have been used in order to calculate these ex- 
ponents both for systems with short-range5 and with long- 
range  force^.^'^ Recently, one such exponent has also been 
determined e ~ ~ e r i m e n t a l l y . ~ ~  

Most of the theoretical and experimental work on inter- 
face depinning has been concerned with the coexistence of 
two bulk phases. In addition, some work has been dor~e on 
depinning near triple points.""14 In all cases studied so far, 
the bulk phases have a finite bulk correlation length. As a 
consequence, the only important fluctuations are configuira- 
tional ones of the interface, i.e., capillary waves. In cam 
trast, we will consider here depinning transitions al, the 
coexistence of a critical. and noncritical bulk phase. 1c. this 
case, two different types of fluctuations are present, namely, 
capillary waves and, in addition, critical fluctuations within 
the surface layer. 

Possible candidates for the bulk coexistence of a critical 
and a noncritical phase are critical end points in binary 

liquid m i ~ t u r e s . ~ ~ ' ~ ~  At such points, the binary mixture is 
critical and coexists with the noncritical vapor phase. In the 
bulk, such a transition may be studied by a Landau- 
Ginzburg (LG) potential f ( n )  for the fluid density n with 
two degenerate minima; the minimum a t  n = n,, correspond!! 
to the vapor, the one at n = nc to the critical mixture. For 
convenience, we will use the rescalecl field 4 = (n - nc )/ 
Oiv-nc). Thus, the vapor and the critical mixture are 
given by 4 = 1 and == 0, respectively. 

For a semi-infinite system, the LG free-energy functional 
has the generic 

where z denotes the coordinate perpendicular to the surface 
at z = 0. In the present context, the bulk potential f is tak- 
en to be 

where 0 < M < 1 solves i;uM"+ M - 1 = 0, which guaran- 
tees continuity off  (qb) at 4 = M. { is the finite bulk corre- 
lation length within the vapor. The exponent q in (2) deter- 
mines the type of bulk criticality. q = 1 describes a noncriti- 
cal phase. This case has been studied previously in much 
detail.' Within usual Landau theory, q = 2 and q Ss 3 
describe a critical end point and a mullicritical end point of 
higher order. On the other hand, it may also be useful to 
consider a generalized Landau theory where nonclassical 
values for the bulk exponents can be incorporated. Such 
generalizations have been studied previously for two prob- 
lems which are different from, but related to, the problem 
considered here, namely, (1) for the coexistence of a critical 
phase and a noncritical one in the infinite bulk 
and (2) for the decay of the order parameter profile at bulk 
criticality in a constrained system.17r18 In these cases, the 
effective q value was taken to be 
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where 8* is the bulk exponent for the critical isotherm. 
The surface or wall potential f in (1) is chosen to be 

For arbitrary values of h i  and a l ,  one finds a complex phase 
diagram?9 Here, we will confine our discussion to critical 
depinning which involves two scaling fields and which oc- 
curs for a l > & ( q ) > O  and for h1->O+. Note that hl=O 
corresponds to a finite value of the physical field which cou- 
ples to the fluid density n since 4 - (n - nc)/(nv- nc). 

For the above model, the order parameter profile 
M (z ) = ( 4 )  may be calculated in closed form within Lan- 
dau theory. The result isz0 

for osz GI, and 

for z Z= /. This profile has the shape of a kink with an inter- 
face at z = /. Note that this kink is rather asymmetric since 
its zdependence is exponential for z > l and  a power law for 
z < I. As h iÃ‘  0, the interface at z - 1 becomes unpinned 
since 

/ = h i ?  Fu -q -1  . (6) 

As the interface unbinds, the surface order parameter 
M l  - M ( z  - 0 )  goes continuously to zero as 

Note that the (multi-)critical bulk phase corresponds to 
M = ( 4 )  = 0. Thus, (7) implies that the surface layer be- 
comes more and more critical as the interface moves to infini- 
ty. On the other hand, the surface layer is expected to have 
a large but finite correlation length as long as I is still finite. 
This is indeed the case as will be shown next. 

Within Landau theory, the correlation function 

with qÃ‡ - M, can be expressed by the normal modes of 
the Gaussian fluctuations. In order to determine these 
modes, one has to solve the Schrodinger-type equation 

[where f "(x ) - d 2  f /dx2], with the boundary condition 

This eigenvalue problem can be solved exactly for all values 
of q. First, consider q =2. In this case, the potential 
ft '(M(z 1) in (9) reads 

where we have put u - f  - 1 for convenience. The eigen- 
modes gn(z)  are given in terms of the functions 
x112~i~12(x) where J v ( x )  are Bessel functions of the first 
kind2' and x -s/E'(l/~l- z ). As a result, one finds three 
different types of modes: (I) A soft interface mode go(z). 

Since this eigenmode is the ground state of (91, one has. 
go(z)  > 0 for all z. In addition, it is localized around z - 1  
and becomes proportional to the zero mode M (z ) = dM/dz 
for h 1 + 0. The approach towards this limit is, however, 
subtle, since go(z = 0 ) a  h?, whereas M (z - 0 ) a  hf .  The 
energy Â£ of this soft mode has the asymptotic behavior 

with c-30/(4-SM), M =  (a- 1)/2, and M I  given by 
(7). (11) A discrete set of layer modes gn ( z )  with 1 aS n aÂ N, 
where N depends on h 1. Each layer mode gn (z ) also becomes 
soj? for h 1 + 0, since its energy goes as 

with M I  from (7). yg#O is determined by ~s / i (&)=0 .  
These eigenfunctions have t h e  asymptotic behavior 
gn(z)ab;l2 for fixed z < < l ,  g n ( p l ) a h p  for O < p < l ,  
and gn ( 1  ) a  h p .  (Ill) A continuum of scattering modes with 
eigenvalues E > 1. 

As a consequence, the correlation function (8) consists of 
three parts: 

Co and Cl are due to the soft interface mode and to the 
bunch of soft layer modes, respectively: 

with 

and p = (r2 + A - ~ ) ' / ~ ,  where A i s  a high-momentum cutoff 
for the continuum the01-y.~~ C in (14) is the contribution 
due to the scattering modes, and is of no interest here. 
Note that the dependence of the scaling field hl enters in 
(15) and (16) both through En and through gn(z). As a 
consequence, the asymptotic behavior of C(r,zzf) is quite 
different for different values of z and z'.19 In the interfacial 
region, one has z,z'== I. In this case, 

in the limit r + oo. The two length scales tu and & are 
given by 

where (12) and (13) have been used. It follows from (17) 
and (18) that the asymptotic decay of the correlations in the 
interfacial region is governed by f  since fn - GI2 >> f t .  

For general q, (9) can be solved in terms of the functions 
X ~ / ~ J + ~ ( X )  with ~ - + ( 3 ~ - 1 ) / ( ~ - 1 ) ,  x = & ( ~ / A  -z) ,  
and A = ( q  -1)uMf- '. Jj..(x) are again Bessel functions 
of the first kind." As a result, we obtain the asymptotic 
behavior 
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for the two correlation lengths. The detailed behavior laf En 
and gn (z ) will be discussed elsewhere.19 

The above analysis of C (r,zzr) implies that the interface 
fluctuations and the fluctuations within the (almost) critical 
layer are governed by the two different length scales and 
ft, respectively. Note that i.he correlation length .$; is found 
to be proportional to the layer thickness 1 as given bj ( 6 ) .  
As a consequence, the surface layer appears to be a peculiar 
finite-size system where the "finite size" 1 always matches 
the correlation length &. 

So far, we have discussed the semi-infinite system a t  the 
bulk (multi-)critical end point. In this case, the behavior at 
critical depinning depends only on the scaling field h as dis- 
cussed above. There is, however, an additional scaling field 
denoted by t, which governs the approach towards !he 
(multi-)critical end point. If this point is approached on 
some thermodynamic path inside the bulk vapor phase, the 
potential f ( 4 )  has the general form f ( 4 )  = t +g (4, t ), for 
0 == 0 with t > 0 and g(4,O) - + u 2 ~ 2 q ,  as in (2). For such 
i i  potential, one finds the following asymptotic behavior 
from an investigation of Landau theory and Gaussian fluc- 
i u a t i o n ~ : ~ ~ ~ ~ ~  

where fs denotes the surface free energy. Note that 
p=a,- 1 as in all types of depinning transitions studied 
previously. In addition,, as = 2v 1. This curious relation allso 
holds in all previous cases for any value of d, as can be seen 
from Tables 1 and 2 in Ref. 8 (b). 

The above results clearly show that there are two dif- 
ferent types of fluctuations, namely, (1) capillary wave:; due 
to the soft interface mode, and (2) critical fluctuatioms 
within the surface layer due to the soft layer modes. Both 
types of fluctuations can affect the results of Landau theory. 
Some estimate of their relative importance may be obtained 
if one considers their effects; separately. 

First, consider the capillary waves which give a Gaussian 
(or one-loop) contribution 

to the surface free energy. If one compares (24) to the six- 
face free energy f. as obtained in Landau theory, one fin~ds 
the boundary dimension 

For d < d!? (q ) ,  capillary waves become important, and 
t i  ('-') is more singular than the Landau fs. 

Due to the presence of capillary waves, there is yet anoth- 
er boundary dimension, namely, d*=3. For d 'Â£.d* the 
interface becomes rough as it unbinds from the surface or 
wall. The asymptotic behavior of its width ti is given byz3 

For t1 - /, capillary waves are expected to affect the critical 
behavior. In fact, the relation ti - / again leads to d = d *i 

as given by (25). It will be shown elsewherez4 that this 
equivalence is true in general. 

The properties of capillary waves can be studied most 
conveniently in the framework of effective interface poten- 
j.ials V (I ) for the fluctuating interface coordinate 1 (r).3- 
In the present context, the effective potential may be taker1 
as 

V( l )= t / -h~I -a+l -b  , (26) 

with a =q/(q - 1) and b = (q + l ) / (q  - I ) ,  where unim- 
portant constants have been omitted. [t is remarkable that 
this potential contains powers of 1, although all interactions 
are short ranged. If MF theory is applied to (261, one re- 
covers all results of Landau theory for the critical exponents 
as described above. For d = 2, transfer matrix methods 
yield the surface free energy /.a hy'l for q > 3 in accor- 
dance with Landau theory. In addition, one finds1'' 
/,cc hfzg-2)/(q-2) for 2 < q < 3, and /,cc exp( - 2w/8hi) for 
i p  2, with Shi = hi - h? and h? = for the potential 
(26).25 

On the other hand, one may consider the critical layer 
fluctuations in the absence of capillary waves. Their Gauss- 
ian contribution to the surface free energy is 

with E,, - nÂ¥tl'- - n^f - i2 .  To leading order, this is just the 
Gaussian (or one-loop) contribution to the free energy per 
unit area for a slab of thickness 1 at bulk criticality. This 
cc)nt.ribution contains a singular term a l.$rd, which one ex- 
pects quite generally from finite-size scaling. If one c o m  
pares this term with the Landau result for the surface free 
energy, one obtains 

This is just the upper critical dimensions for the bulk critical 
behavior. For instance, d;*= 4 for q = 2, which corresponds 
to a bulk critical point. 

Some insight into the effects of the critical layer fluctua- 
tions on the wetting transitions can be gained by comparisor~ 
with a similar problem, namely, the decay of the order 
parameter profile at a bulk critical point in a constrained sys- 
tern.17'18p26 In this case, Landau theory predicts a decay 
<x z l .  whereas scaling and renormalization-group 
work26 yield z-"., with w =fib /vb = (d - 2 )I2 
= ( 2  - Â¥Ãˆ )I(& - 1 V 7  Since w c 1, the critical fluctuations 
suppress the decay of the order-parameter profile. We ex" 
pect that the critical layer fluctuations studied here will have; 
a similar effect on the order parameter profile M ( z )  as 
given by (5a). Such a change in M (z ) will also modify the: 
effective interface potential of (26). 

It is possible to extend the above analysis in various ways, 
First, of all, one may depart from the scalar model (I), and 
consider more general models which involve several physi- 
cal densities.28 This would allow a discussion of the critical 
end points in ' ~ e .  In addition, one may include long-range 
surface or substrate potentials as in Ref. 8(b). Finally, the 
effects of the critical layer fluctuations on the depinning 
transition may be sy~~tematically studied via a loop expan- 
sion for the order parameter profile. Work in these direc- 
tions is in progress. 
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