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In this paper we study the interfaces between phases in a phenomenological 
model of a microemulsion that is in equilibrium simultaneously with an 
oil-rich and a water-rich phase. The tensions and chemical-composition 
profiles of the interfaces are calculated. We ask whether the oil-water, 
oil-microemulsion and microemulsion-water tensions uow, u r n  and u r n  are 
related by now < uom+amw or by uow = uom+umw In the former case the 
microemulsion phase does not wet the oil-water interface, whereas in the 
latter it does. We find separate ranges of values of the model's parameters 
in which each possibility is realized, while the microemulsion is a middle 
phase related symmetrically to the oil and water phases. When a parameter 
that breaks that symmetry is varied and a critical endpoint of the three-phase 
equilibrium is approached, an originally non-wet oil-water interface becomes 
wet (while an originally wet interface remains wet). The transition is of first 
order, accompanied by a change in interfacial structure. A microscopic 
lattice model of such three-phase equilibria is also described. In its context 
we raise (but do not fully answer) the same questions that we treated in the 
earlier phenomenological model. 

It has been rep~r tedl -~  that when a middle-phase microemulsion is in equilibrium 
simultaneously with an oil-rich upper phase and a water-rich lower phase the tension 
aow of the oil-water interface is less than the sum of the tensions corn and omw of the 
oil-microemulsion and microemulsion-water interfaces: 

This implies that the microemulsion does not perfectly wet (spread at) the oil-water 
interface; rather, the three phases meet with non-zero contact  angle^.^ This has been 
verified by direct visual o b s e ~ a t i o n . ~ ,  When the microemulsion is related symmetrically 
to the other two phases, oOm = omw; so when, as is sometimes found,lp3 crow is equal to 
the larger of those two, in that symmetrical equilibrium the three tensions cow, a,,_ and 
umw would have a common value and the three contact angles would all be 120Â¡ 

From Cahn's theory of wetting6 it follows that close enough to either critical endpoint 
(the critical point of the equilibrium between the middle-phase microemulsion and either 
the upper or lower phase, in the presence of the other) the microemulsion should spread 
at the interface between the other two phases. Thus, at some three-phase state between 
the symmetrical one, in which oOm = omw and in which the microemulsion does not wet 
the oil-water interface, and either critical endpoint, in which it does, there should be a 
transition between incomplete and complete wetting. This was remarked by Chatenay 
et aL5 Such a transition would entail a discontinuous change in structure of the oil-water 
interface. In the non-wet regime that interface presumably consists of a microscopically 
thin, concentrated layer of oriented surfactant (perhaps even a monolayer),13 while in 
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the wetting regime it would consist of a thick layer of the bulk microemulsion phase. 
The predicted transition has been seen in some of these microemulsion phase eq~i l ibr ia , '~  
but not in others.7b 

The connection between these three-phase equilibria and those in mixtures with smaller 
amphiphiles, such as the mixture benzene-water- ethanol-ammonium sulphate, has been 
empha~ized.~ In that and analogous mixtures it was found9 that oOw = onm +omw in all 
the three-phase states between the two critical endpoints, including the symmetrical 
equilibrium in which oOm = omw, so that the middle phase always spreads at  the interface 
between the top and bottom phases. Thus, the existence of a range of non-wetting states 
is not universal. In a progression of systems with increasingly large surfactants one should 
see a change from those in which the oil-water interface is always wet by the middle phase 
to those in which it is wet near the critical endpoints but not everywhere between, i.e. 
a change from systems whose oil-water interfaces do not, to those whose oil-water 
interfaces do, undergo the wetting transition. This is also noted by Telo da Gama and 
Thurtell10 in their paper at this Symposium. 

To test and illustrate these ideas we calculate the tensions and structures (composition 
profiles) of the interfaces in the three-phase equilibria that occur in a model 
rnicroem~lsion.~~ The model is an adaptation of the earlier ones of Talmon and Prager1214 
and of de Gennes et al.15, l6 

In the next section we recall how the model is defined and we construct a free-energy 
functional from which the interfacial tensions and composition profiles may be calculated. 
We then outline the calculation and give the results. We find that there is indeed a range 
of values of the model's parameters for which, in the symmetrical three-phase equilibrium, 
the oil-water interface is wet by the microemulsion phase, and a range in which it is not; 
when it is not, a transition to wetting then occurs when the symmetry is broken and either 
of the critical endpoints is approached. 

Finally we describe, as an alternative to the phenomenological model, a lattice model 
equivalent to an Ising model with second-neighbour and three-spin interactions. Its phase 
equilibria are like those of microemulsions, with ultralow interfacial tensions, but its 
possible interfacial phase transitions have not yet been studied. 

Phenomenological Model 
We picture an oil-water-surfactant solution as divided into cubic cells of edge length 
Â£, the fraction (j> of them oil-filled and the fraction 1-4 water-filled, with surfactant 
molecules of number density p confined to the microscopic interface between oil-filled 
and water-filled cells (the surfactant film). The model is defined" by the free-energy 
density F(4, p, <^): 

where a is a fixed microscopic length (a few A), ay is the oil-water interaction energy 
per unit area of contact between oil- and water-filled cells (ca. 50 dyn c m l )  and D and 
A are two parameters in the curvature free energy of the surfactant film: the dimensionless 
D/a2kT $ 1 for a flexible film or > 1 for a stiff film,15 and the curvature-bias parameter 
Aa (favouring oil-in-water or water-in-oil curvature, according to its sign16) is tunable 
(by varying salinity, for example) between ca. - 2 and + 2. 

For given <b and p (and fixed kT, a, oo, D and A) the equilibrium S, is that which 
minimizes the F(#,p,S,) in eqn (2). The minimum may occur either at S, = a + ,  with 
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5F/8( > 0 there, or at some ( = ti(^, p) > a at which 8F/8( = 0. The system's equilibrium 
free-energy density <I> at any 4,p is the smaller of F(<f>,p, a + )  and F[4,p, (El (4,p)I: 

@(4, P) = min {F(4, P, a + 1, F[^ P, w, P)]}. (3) 

The free-energy surface (D(q5,p) is thus a composite, with a seam in which the separate 
surfaces F(</>,p,a+) and F[<t>,p, Uif>,p)] intersect. The projection of that seam onto the 
<b,p plane defines the crossover locus: 

F[4, P, L(4,p)I = F(4, P, a + (crossover). (4) 

The equilibrium phases are found by the tangent-plane construction applied to the 
surface (D = (D(4,p). Three-phase equilibrium arises from triple tangency. Two of the 
points of tangency are found to lie in the F(</>,p,a+) sheet of the (D(q5,p) surface and 
one in the F[t/>,p, (,(<^,p)] sheet." The former are the oil- and water-rich phases, which 
we shall call a and 7, respectively; in them ( = a. The latter is the microemulsion phase, 
which we call /?; in it ( = (i($,p) > a. 

Let cu represent any stable phase, with 4,,,,poi its coordinates in the 4 ,p  plane. Suppose 
the plane tangent to the @($, p) surface at &, pm has the equation (D = La,(4, p) with Lm 
a linear function of its arguments. The height &(</>, p) of the (D((/>, p) surface above this 
plane is, from eqn (3), 

V,M> P) = F[4, P, a$> P)I - L,U,  P) (5) 

where E(<i>,p) means a +  on that side of the crossover locus where 
F(#,p, a + )  < F[(t>,p, i:,,((l>,p)] and it means (,($,p) on the other side. If y is any phase 
in equilibrium with a> the respective tangent planes are the same, Lu(4,p) = Ld(4,p), 
so U,,,($,p) = UJ4,p). Then R ( 4 , p )  = 0 when 4,p are the coordinates $u,pm or when 
they are the coordinates 4,,,,py of any other phase y that may be in equilibrium with 
cu; while U,,,(i/>,p) > 0 at all other $,p. 

We now define a related function U,,,($, p, f;) of the three variables 4, p and (: 

UID(4> P> (r) = F(^ P, 8 -Lo,@, P). (6) 

By definition, the in eqn (5) and the U,,, in eqn (6) are connected by 

C ( 4 ,  P) = u.U, P, ̂ , P)]. (7) 

If a phase y is in equilibrium with a> then U,,, s U .  This U,,,(4, p, ()vanishes at if),,,, p,,,, &,, 
the coordinates of phase 0.1 in the three-dimensional 4, p, ( space, and at the 4,p, Â£ that 
are the coordinates of any other phase in equilibrium with cu, while U0)(4,p, f;) > 0 
elsewhere. We see this as follows. 

First, f,,, is either a +  or fl(q%,,,,p,,,), according to which sheet of the composite 
4 , p )  surface the phase a> lies in; i.e. = m w p m ) .  Thus, by eqn (7), 
Ua($wpw<ial) = Uaf^wpui), which we know to be 0 ;  similarly U^y,py,Â£,Ã = 0 for 
any phase y in equilibrium with 0.1, since then Urn =. U,+,. Secondly, since ((4,p) is the 
( that minimizes F((fi,p, (), we have UU(4, p, () 2 Om(^>, p),  from eqn (5) and (6). 
Therefore, since U,,,(4,p) > 0 when d>,p are not the coordinates of the phase cu or of 
any phase in equilibrium with cu, it follows that U,,,(d>, p, f;) > 0, too, everywhere in the 
three-dimensional 4, p, ( space other than at such phases. 

Thus the three-dimensional hypersurface U = Urn(& p, f;) in the U, 4, p, Â£ space 
generally lies above the hyperplane U = 0, but touches it at the points #,p, f; that are 
the coordinates of the phase cu or of any phase in equilibrium with w. The surface is 
singular at the hyperplane ( = a, with U,,,(</>,p, () finite for ( > a and infinite for f; < a, 
by eqn (2) and (6). The surface is otherwise analytic in 4,p, f; for all 1 > d> > 0, p > 0, 
( > a. This is unlike the original surface U = R(q5,p) in the three-dimensional U, 4 ,p  
space, which has a seam in it, of which eqn (4) is the projection in the 4, p plane. 
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In the 4 and p directions the plane U = 0 is tangent to the U,,, surface where it touches 
it; i.e. 8Um/84 = 0 and 8U,,,/8p = 0 at such points; and also in the f direction, when 
such a point is a ft (microemulsion) phase, in which Â£ = Â£,i(4fl,pÃ > a, because 
QF(</>,p,f)/Qf = 0 at f = &((/>,p), so 8Ua/Sf = 0 then, too. However, when the 
point ot contact is at an a or y phase, where Â£ = a + ,  the contact is not a tangency in 
the f direction; instead, 8U,,,/3f > 0 at such a point. Except for this circumstance, which 
we shall have to keep in mind in the calculations that follow, the contacts of the 
hypersurface U = U,,,((f>,p, df) with the hyperplane U = 0 are tangencies, just as, earlier, 
the contacts of the surface U = R(4 ,p )  with the plane U = 0 in the three-dimensional 
U, 4, p space were tangencies. 

In this model the structure of the interface between two coexisting phases is given by 
the profiles 4(z), p(z) and ((z), which show how 4, p and (^ vary as functions of the distance 
z in the direction perpendicular to the plare of the interface. If the two phases are a and 
ft ,  say, at z = - oo and z = + a ,  respectively, then # ( - a )  = &, /'(-a:') =pa,  
<^(+ oo) = Â£, etc. The equations 4 = #(z), p = p(z) and f = <(z) are the parametric 
equations of a trajectory on the hypersurface U = Ua(4, p, df) or in the three-dimensional 
+,p, <  ̂ space. This trajectory connects the points </>^,pa, & and dÃ‡ pa, Â£, and describes how 
4, p and f vary with each other through the interface. 

We calculate the composition profiles and tensions of the interfaces from mean-field 
theory in the square-gradient approximation.17 We adopt as the free-energy functional 

where y,, y2 and y, are 4, p and f ,  respectively; where we shall later choose and fix the 
coefficients my(= m,,); and where (in principle) the function U is the Um(if>,p,t) 
[ Urn($, p, Â£,) defined by eqn (6), with w and y the two bulk phases whose interface we 
are studying. In practice, as explained in the next section, we approximate U,,,($,p, df) 
by a simpler function that retains the most important features of U,,, but allows much 
of the calculation to be done analytically; and we use ln(f/a) in place of Â£, In our 
applications of eqn (8) the phases (o and I,V are any two of a, /? and y,  where, following 
OUT earlier notation, a and y are the oil- and water-rich phases and ft the microemulsion 
in three-phase equilibrium. 

The conditions that the y,(z) minimize the a in eqn (8) are 

These are the equations we solve to obtain the y,(z). The minimum cr in question is the 
equilibrium surface tension, obtained from eqn (8) once the y,(z) are known. 

Method of Calculation 
In the immediate neighbourhood of each equilibrium phase w the hypersurface 
UCO(<t>,p, f )  is parabolic in the <b and p directions, and also in the Â£ direction when w is 
a ft phase, but is linear in the f direction when w is an a or y phase (previous section). 
Thus [now calling U,,, simply U, as in eqn @)I, near the B phase U is of the form 

while near the a phase it is of the form 

U ( d , , ~ , O % A ' ( d , - d . , Y + B ' ( p - p ~ ) ~ + C ( l f l - d > ~ ) ( p - p , } + ~ ' ( f - ~ )  (11) 
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and similarly near the y phase. The coefficients A,  B etc.  are the appropriate second 
derivatives (or, in the case of D', a first derivative) of U with respect to 4, p and f ,  
evaluated at the location &Ã£., p,.,, tu (w = a, /?, or y) of the phase in question. The function 
U is as given by eqn (2) and (6). The equilibrium a, /? and y phases are accurately located 
numerically by the triple-tangent c o n s t r ~ c t i o n . ~ ~  

In a related problem of two-phase equilibrium in which U is parabolic near each 
equilibrium phase, it was found that U could be successfully replaced by a composite 
of the two paraboloids that fit it at the separate phases.18 With y a general point in the 
density or composition space, with the two phases at ya and yÃˆ and with Pa(y) and P&) 
the respective quadratic functions of the components of y that match U(y) through and 
including its second derivatives, at ya and yÃ§ this scheme18 replaces U(y) at each point 
y by min [PA),  Pe(y)]. The first derivatives of this composite, approximate U(y) are 
discontinuous at the seam in which the two paraboloids intersect, whereas the original 
U(y) was analytic. Since Uin this example now deviates from 0 quadratically as y departs 
from ya or yÃˆ the solutions of the trajectory equations (9) are exponential in z; on each 
sheet the physically relevant solutions y(z) -ya etc.  are linear combinations of terms of 
the form exp(- lzl/0. The full solution for the physically relevant y(z) is a composite 
consisting of a solution on the a paraboloid for z < z0 (for some z0, which we may call 
0 if we wish) and of one on the /? paraboloid for z 2 z,,. The separate a and /? solutions 
are chosen from the respective families of such solutions so as to make the several y,(z,,) 
and their first derivatives yi(zo) continuous at z,,, with y(zo) one of the points of the seam 
in the composite U surface. The second derivatives y are discontinuous there; that is 
an artifact of the approximation. 

We now adapt that scheme to the present problem of three-phase equilibrium. The 
truncated expansion (10) defines a paraboloid in the four-dimensional U, 4, p, t space 
at the /?phase, while the truncated expansion (1 I), and its analogue for the y phase, define 
surfaces that are parabolic in the <i> and p directions and linear in the Â£ direction, at the 
a and y phases. We replace U at each point by that one of these three surfaces which 
lies lowest there. The resulting approximate, composite U surface has two seams, one 
where the a and /? surfaces intersect and one where the and y surfaces do. [We observed 
numerically that these seams, projected onto the 4, p plane, are very close to the crossover 
locus (4) associated with the original <S> surface.] 

On the /? sheet the physically relevant solutions 4 ( ~ ) - 4 ~ ,  p(z)-pa and Â£,(z)-Â£ are 
again linear combinations of exponentials of - \z\. On the a and y sheets the decay of 
4(z) and p(z) to their values dy,,py_ or &py in the bulk phases is again exponential, but 
not that of f(z) to its bulk-phase value a. Instead, the decay is parabolic and the value 
f = a is achieved at a finite z. This is equally true of the exact trajectories that would 
be obtained from the original U surface. It happens because 8U/8f > 0 at the a and y 
phases (previous section). A schematic flz) profile for an interface is shown in fig. 1. 

The trajectories #(z) etc. ,  for the a@ or By interface cross only one seam of the 
approximate U surface, that between the a and /? or /? and y sheets. The solutions are 
then constructed so as to yield yi(z) and yi(z) that are continuous across the seam, as 
described above and as in the original application of the method.18 The trajectories for 
the ay interface cross both seams, and we enforce continuity of yi(z) and y,(z) at both 
crossing points. For the non-wet ay interface, which does not consist of a layer of /? phase 
and for which the trajectory, therefore, in going from a to y, does not go via 6, the 
matching is done numerically rather than analytically; it requires, in particular, the 
numerical determination of the (finite) distance Az between the two points z at which 
the crossing of the seams occurs. 

For simplicity we have presented the story to this point as though 4, p and f were 
the basic variables, but in our actual calculations we used In(i/a) in place of f as the 
third coordinate: in eqn (8), y, = ln(</a); in eqn (10) the expansion is in powers of 
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Fig. 1. Variation of Â£ through the vfi interface (schematic). The S, profile achieves its value a in 
the a phase at a finite z, in the neighbourhood of which Â£,(z is uarabolic. It approaches its value 

Â£, in theft phase asymptotically, but exponentially rapidly, as z +a. 

In (^/a) -In (&/a) = In (<^I$); and in eqn (I 1) the expansion is in powers of ln (<^/a). We 
found that by choosing mu = 0 for i # j, i.e. by assuming the diagonal form 

for the gradient sum in eqn (8), we still had enough flexibility, through freedom of choice 
of the coefficients md, mn and mt, to produce and explore a wide range of possible 
behaviour of the profiles and interfacial tensions. We then, for simplicity, adopted the 
diagonal form (12) in most of our calculations, including all those whose results we 
report in the next section. 

Except for the necessity of finding Az, the distance between the two seam-crossing 
points for the non-wet ay interface, numerically, the solutions of eqn (9) for the profiles 
are obtained analytically. The coordinates 4, p, and In (<^/a) are rescaled by dividing them 
by the square-roots of md, mp and mt, respectively. Then, in particular, the decay lengths 
C in the terms of the form exp (- lzl/0 are found from the eigenvalues of the resulting 
matrix of coefficients of the rescaled quadratic terms in eqn (10) and (1 1). Going beyond 
expression (12) to include non-diagonal terms (dyt/dz) (dyj/dz) in the gradient sum in 
eqn (8) requires only the simultaneous diagonalization of the gradient sum and of the 
matrix of quadratic terms in eqn (10) or (1 1). We did that in a few instances and found 
the cross-terms to have no qualitative effect on the profiles or tensions. 

Results 

Our results are shown in fig. 2-8. All those we present are with the values D/a2kT = 3 
and 6 a 2 / k T  = 716 of the two parameters D and an (in dimensionless form) that occur 
in the free-energy density in eqn (2). This value of o&T is the same as that adopted 
in an earlier study;" the value of D/a%T is less than that used earlier," but is probably 
more realistic.15 We consider various values of the asymmetry parameter A. The 
remaining parameters of significance are the dimensionless forms amd/kT, mÃ£/a5k and 
am,/kT of the coefficients in expression (12). 

We observed numerically that whether in the symmetrical three-phase equilibrium 
(A = 0) the middle-phase microemulsion does nor does not completely wet the oil-water 
interface depends only on the ratios of the coefficients in expression (12), not their 
separate values. We show in fig. 2, for the fixed values of D/a2kT and cr&/kT quoted 
above, the wetting and non-wetting regions of the rnp/m#, mp/a6md parameter plane. The 
incomplete-wetting region expands as the curvature-energy parameter D/cfkT increases. 
In fig. 2 this region is enclosed within the region of wetting; the boundary between regions 
extends to very small, but still positive, m.,/a6md. In the narrow area between the 
boundary and the vertical axis as well as in most of the plane below the non-wetting 
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Fig. 4. Profiles of the ay interface in the symmetrical three-phase equilibrium. (a) </>(z), (b) a3p(z) 
and (c) <(z)/a; i,/a = 1 for z / a \  2 12.0. The crossing points are at z / a  = Â 6.1. 

region in which the middle-phase microemulsion (at A = 0) does not spread at the 
oil-water interface (fig. 2). It is perhaps because this is so close to the boundary that 
we are able subsequently, as A increases, to locate the transition to wetting at an easily 
attainable proximity to the critical endpoint. 

In fig. 3 we show the composition profiles of the aft and /?y interfaces in the symmetrical 
equilibrium (A = 0). Note the slow decay to the bulk-phase values in the /? phase. 
The ultimate decay is exponential,l9 but the microemulsion has a great osmotic 
compressibility,ll implying large composition fluctuations and large fluctuations alsoz0 
in <^, and hence a long decay length i, in exp(-lzl/i,). As the critical endpoint is 
approached with increasing A, the osmotic compressibility of the /? phase, the fluctuations 
of 4, p and in that phase1l~ z0 and the decay length i, will be even greater. Note in 
fig. 3(b) that there is a concentration of surfactant at the interface greater even than that 
in the bulk microemulsion phase. Note in fig. 3(c) that in the a and y phases the value 

= a is achieved at finite z (cf fig. 1). We have arbitrarily taken the crossing point, where 
in our method of calculation the trajectory that represents the variations of 4, p and Â£ 
crosses from one sheet of the (approximate) U surface to the other, to be at z = 0. The 
profiles have discontinuous second derivatives there, but these are not visible in the figure. 
The first derivatives are finite and continuous there. That p(z) in fig. 3(b) appears sharply 
peaked is only because of the small scale of the figure; its slope is finite, and its maximum 
is rounded and occurs at slightly positive z. 

In fig. 4 we show the structure of the oil-water (ay) interface in this symmetrical 
three-phase equilibrium. We note in fig. 4(b) the concentration of surfactant in the 
interface with a slight dip in the middle, so that it has local maxima reminiscent of those 
in the aft and By interfaces seen in fig. 3(b). We recall that with these values of the 
parameters the ay interface is not wet by /?. The interface is nevertheless broad, of width 
ca. 12a. It is interesting that Â£ increases slightly in the interface from its bulk-phase value 
a [fig. 4(c)], although it does not become nearly as great as in the bulk /? phase [fig. 3(c)]. 

At these values of D/a^kT and go az/kT the a$ critical endpoint is at Aa Ã 1.1. In 
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Fig. 7. Profiles of the ay interface when Aa = 0.75. (a) </i(z), (b)  a3p(z) and (c) f(z)/a; Â£,/ s 1 for 
z/a <a -32.0 and z/a 2 21.0. The crossing points are at z/a = k20.2. 

fig. 5, 6 and 7 we show the profiles of the ofi, By  and ay interfaces, respectively, at 
Au = 0.75 (which, it will transpire, is still below that of the wetting transition). Now 
[fig. 5 (b) and (c)] there is no longer a maximum in p(z) or in <(z) in the ofi interface, which 
is the one that is becoming critical, although there is still a sharp maximum in p(z) and 
a maximum in ('(2) in the By interface [fig. 6(b) and (c)]. Note that Â£ in the bulk /? phase 
is less than before [fig. 3(c)]; although the fluctuations in (' in that phase diverge at the 
critical point,20 the mean value itself decreases to a there.ll In fig. 7 we have chosen z = 0 
to be half way between the two crossing points. The interface is now very broad, mainly 
because of the great distance between crossing points; i.e. the part of the (approximate) 
U surface that arises from the /? phase is now very extensive. Thus, although at this A 
the ay interface is not yet perfectly wet by /?, the /? phase has already a considerable 
influence on its structure. 

Fig. 8 shows the sum uag+u@,, of the tensions of the ofi and By interfaces, and the 
tension om, of the (stable or metastable) non-wet ay interface, as functions of A. These 
cross at Aa Ã 0.86. That is the wetting transition; at smaller A the ay interface is not 
wet by the /? phase, at greater A it is, and it then remains wet to the critical endpoint 
at Aa a; 1.1. As D/a2kT increases, the ratio of A at the wetting-transition point to A 
at the critical point approaches 1. Somewhere between the wetting and critical points 
(a little past Au = 0.9 for the value of D/a2kT we have been assuming here) there ceases 
to be a physical solution (i .e. there is no longer even a metastable structure) for a non-wet 
ay interface. 

In fig. 8 we see that cay in the symmetrical equilibrium (A = 0) is kT/a2, i.e. 
ca. l o 3  times the tension of an oil-water interface in the absence of surfactant, which is 
realistic for microemulsions. That uaa+uft' has a minimum at A = 0 and is greatest at 
the critical endpoints is also as in experiment (although here the increase is unrealistically 
great). 

When at this D/a%T and ay^/kT the point mt/md, mp/a6md lies outside the shaded 
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Fig. 8. (a) (aM+up7)a2/kT, and (b)  u ,a2 /kT  for the non-wet ay interface, as functions of Aa. 

region of fig. 2, so that in the symmetrical equilibrium at A = 0 the ay interface is wet 
by B, it remains so, we have found, for all A up to the critical endpoint. 

Lattice Model 
As an alternative to the phenomenological model we have been discussing we shall here 
describe a lattice model with prescribed intermolecular in t e rac t i~ns ,~~  for which one may 
hope ultimately to answer the same questions about the interfacial tensions. Wheeler has 
proposed a related model.22 The one we describe here is a generalization of an earlier 
one,239 24 in which three species of molecules, AA, BB and an amphiphilic species AB, 
are confined to the bonds of a lattice, subject to the conditions that every bond be 
occupied once but once only, and that only the like ends (all A ends or all B ends) of 
molecules may meet at the same lattice site. 

That model is equivalent to the spin4 Ising model with nearest-neighbour interactions, 
and so can have only a two-phase equilibrium with a critical solution point (or, at  high 
concentrations of AB, an ordered phase analogous to an antiferromagnet, but that is 
irrelevant here). The critical and near-critical phases have large amounts of 'oil' (AA) 
and 'water' (BB) in the same phase, but only by virtue of also having a comparably high 
concentration of amphiphile (AB); the interfacial tension is then vanishing or low, but 
only by virtue of the system's being at or close to a critical point. Thus, these critical 
or near-critical phases are not usefully thought of as microemulsions, in which oil and 
water would be solubilized by much lower concentrations of amphiphile and in which 
the interfacial tensions would be low (ca. a thousand times lower than in the absence 
of surfactant) even when, judged by their compositions, the phases are far from a critical 
point. Also, by having at most two phases coexisting, the earlier model cannot describe 
a middle-phase microemulsion in equilibrium simultaneously with an oil-rich and a 
water-rich phase, which is one of the signatures of microemulsion phase equilibria. 

It is the curvature energy of the surfactant film in the phenomenological model that 
allows it to have such a three-phase equilibrium.ll In the earlier lattice modelz3- 24 there 
is also an identifiable surfactant film; it may be thought of as the intricately folded, 
self-intersecting structure made up of squares each of which is the perpendicular bisector 
of the bond on which an AB molecule lies. By the conditions of the model this surfactant 
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Table 1. Equivalences between the lattice micro- 
emulsion model and the Ising model for a 

simple-cubic lattice 

lattice microemulsion model Ising model 

film forms the microscopic interface between AA-filled and BB-filled regions. In that 
model there is no energy associated with the folding of the film; different allowable 
configurations of the AA, BB and AB molecules yield different film conformations, but 
all are of the same energy. 

We are thus led to postulate an additional interaction giving an energy of film folding.21 
This may be taken to be an energy of interaction of pairs of amphiphiles AB when their 
A ends or B ends meet a t  the same lattice site. If that energy is the same for both A ends 
and Bends we have the symmetrical case, as when A = 0 in the phenomenological model. 
If it is different, there is a curvature bias: AA-in-BB curvature is different in energy from 
BB-in-AA curvature, as when A # 0 in the phenomenological model. 

Extended in this way, the model is equivalent to a spin-; Ising model with next- 
nearest-neighbour and three-spin  interaction^.^^ In this context ' next-nearest-neighbour' 
means separated by two lattice steps, whatever that metrical distance might be. The 
equivalences for a simple-cubic lattice are summarized in table 1. In the microemulsion 
model zAA, zBR and zAB are the thermodynamic activities of the three species, (1 - A )  Q 
is the energy when the A ends of two AB meet at the same site, and (1 + A )  Q is the energy 
when the B ends of two AB meet. The parameters Q and A are analogous to D/a2 and 
Aa, respectively, in the phenomenological model. In the equivalent Ising model - J and 
+ J are the respective energies of interaction of neighbouring parallel and antiparallel 
spins; Â±2 are the corresponding energies of interaction when the spins are separated 
by a diagonal of one of the square faces of any of the cubic cells of the lattice; Â M 
are the energies when the interacting spins are separated by two lattice steps in the same 
direction; Â L are the three-spin interaction energies of connected triples of spins, - L 
when the number of 'up'  spins in the triple is odd, + L  when it is even; and H is the 
external magnetic field (multiplied by the magnetic moment, as is conventional, so that 
it has the dimensions of an energy), favouring 'up'  spins when it is positive. 

This isotropic Ising model is e q u i ~ a l e n t , ~ ~  in the mean-field approximation, to the 
anisotropic, or axial, next-nearest-neighbour Ising model (the ' ANNNI' model).26 Even 
in the symmetrical case, where H = L = 0 (zBB = zAA and A = 0 in the microemulsion 
model; table I), it has multiphase e q ~ i l i b r i a . ~ ~  In particular, there is a curve in the 
J/kT,M/kT plane along which two ferromagnetic phases and a 'modulated' phase 
coexist. These play the roles, respectively, of the oil- and water-rich phases, a and y, and 
the microemulsion phase, p, in surfactant solutions. There are structural periodicities in 
the modulated phase, but these are complex and of mean periods that vary quasi- 
continuously with the thermodynamic state.28 The periodicities are due to the lattice 
structure, with which they are mostly commensurate. It  is readily believable that were 
the same physical mechanisms at  work in a continuum model, this phase, in some parts 
of the thermodynamic plane at least, would be a disordered, bicontinuous micro- 
emulsion. There is also a disordered paramagnetic phase, which in the equivalent solution 
model is the oil-water-surfactant solution that one has with a sufficiently high concen- 
tration of surfactant even when there is no film-curvature energy (Q = 0); however, 
that, as we remarked earlier, is not a microemulsion. 
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As we see from table 1, for the simple-cubic lattice the states in which J+ IOM = 0 
in the Ising model are those in which zAB = (zAA zBB)^ in the equivalent solution model. 
In the symmetrical case zAA = zoo, 2 = 0 (or H = L = 0 in Ising-model language), the 
work required to insert an AB molecule at fixed total number of AA, BB and AB 
molecules, and thus to increase the area of the microscopic surfactant film by that of 
one elemental square, is k~ In [zAB/(zAA zBB)^]. This vanishes on the locus 
zAP = (zAA zBB)+ (or J +  lOM = 0). However, this locus, for the symmetrical case in 
mean-field approximation, is that of vanishing tension of the macroscopic interface 
between the bulk a and y (or ferromagnetic) phases. Those phases are only metastable 
at that locus just because of the vanishing tension of their interface; the stable phase 
there is one of the periodic phases (the one called (3) by Fisher and Seike,26 which has 
a wavelength of six lattice spacings). 

The tensions of the interfaces between stable phases (the ay interface, for example, 
where the ferromagnetic phases are stable), influenced by the proximity of those states 
of vanishing tension, are all low, as in real surfactant solutions. Fisher and Selkez6 give 
the tension of the interface between the ferromagnetic phases and that of the interface 
between either of those and the (3) phase, at low temperatures (still in the symmetrical 
case H = L = 0). In an extension of that work, Fisher and LiuZ7 studied what in 
solution-model language we would call gay-(oap+%), if we take the (3) phase now 
to play the role of /?. (Here, by oay we mean the tension of the non-wet ay interface.) 
The (3) phase is not the modulated phase we spoke of before, but it is produced by the 
same mechanism, and for our present purposes we may take it, too, to be analogous to 
a microemulsion. Translated into our present language, the result of Fisher and Selke 
for the simple-cubic lattice, 

with w = exp [-2(J+ 3M)/kT], x = exp [-2(J+8M)/kT] (13) 

and with a the lattice spacing, is 

We are near J+ 10M = 0, and we may suppose for a microemulsion that15 Q w kT; 
i.e. from table 1, that M Ã -ST .  Thus, to see what the typical values of these tensions 
are we may take M = -@T and J =  (512) k T  in eqn (13), and so estimate 
% - 2oaP = 2oh w 1 x l o 7  kT/a2 from eqn (14). These tensions are ultralow, as in real 
microemulsion phase equilibria. Fisher and Lium found no difference between cay and 
a a B + ~ ,  to a high order in w, so it is still not known whether /? wets the equilibrium ay 
interface. 

This shows promise of being a useful model of microemulsion phase equilibria. It is 
not yet known whether or when it will have the kinds of interfacial phase transitions 
we saw in the phenomenological model, but we may hope that further analysis of the 
model will answer that question. 
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