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Effective Hamiltonians for interfaces which a r k ,  e.g., in the theory of wetting are studied by a non- 
linear functional renormalization group exact in linear order and apparantly accurate for all spatial 
dimensionalities, d. Two nontrivial fixed points are found for d < 3 which describe the critical manifold 
and the completely delocalized phase, respectively. As d varies, these do not bifurcate from the Gauss- 
ian fixed point at du =3 but rather mutually annihilate leaving behind a line of unusual "drifting" fixed 
points. Correspondingly the critical exponents exhibit singular behavior as d 3 -. 

PACS numbers: 68.10.-m 

Renormalization-group (RG) theory provides a gen- 
eral framework for our understanding of critical phenom- 
ena at phase transitions1: Critical exponents with clas- 
sicallmean-field or nonclassical values are related to the 
presence of Gaussian or nontrivial RG fixed points, 
respectively. For typical bulk critical or multicritical 
phenomena, the appropriate nontrivial fixed point bifur- 
cates from the Gaussian fixed point at  the upper critical 
dimension du.2 As a result of this type of bifurcation, the 
critical exponents are continuous, single-valued functions 
of the spatial dimension d, which can be studied by di- 
agramatic perturbation expansions in &=du - d. 

Here, we are concerned with critical phenomena asso- 
ciated with the unbinding (or depinning or delocaliza- 
tion) of interfaces or domain walls. Both wetting and 
commensurate-incommensurate transitions belong to this 
class of interfacial phase  transition^.^'^ For these prob- 
lems, RG calculations have been confined, so far, to the 
vicinity of the Gaussian fixed point.5"9 In the work re- 
ported here we introduce a new, nonlinear functional re- 
normalization group for treating interfacial phenomena 
and, for the first time, find nontrivial fixed points. For 
interfaces subject only to thermal fluctuations, we locate 
two nontrivial fixed points for spatial dimensionalities 
d < 3 which bifurcate from a line of "drifting" fixed 
points when d,, = 3  rather than from the Gaussian fixed 
point as normally expected.1Â Correspondingly, the criti- 
cal exponents exhibit unusual singular behavior as 
d-3-. 

To proceed, consider two interfaces (or an interface 
and a wall) in d dimensions which, on average, are paral- 
lel to some (d - 1 )-dimensional reference plane with 
coordinate vector xs(xl,  . . . , xd- 1). The local interfa- 
cial separation will be denoted by 1 (XI. For the case in 
which only thermal fluctuations play a role, the interfa- 
cial configurations are governed by the effective Hamil- 
tonian 

in which 5 is the interfacial stiffness. The interface po- 
tential V (1 represents the Landau-Ginzburg free energy 

per unit area for uniform interface separation; it depends 
on the character of the underlying microscopic interac- 
tions. 

Now, unbinding transitions described by (1) exhibit 
three distinct scaling regimes depending on d and the 
character of the microscopic  interaction^^^^^^^^^: (i) a 
mean-field (MF) regime for large d and/or sufficiently 
long-ranged interactions; (ii) a weak-fluctuation regime 
with nonclassical exponents but the same (trivially deter- 
mined) phase boundaries as in M F  theory; and (iii) a 
strong-fluctuation (SFL) regime in which both exponents 
and phase boundaries are nontrivial. Here, we focus on 
the SFL regime which is characterized by3''' 

(1 < d  5 3 ) .  Within the functional RG procedure to be 
explained, we will see that, for fixed d < 3, the critical 
points for all V(l) satisfying (2) map onto the same non- 
trivial fixed point potential, V*(.l). Hence, the whole 
SFL regime is characterized by universal critical be- 
havior. On the other hand, all potentials V(l)  satisfying 
(2) which lead to complete interface separation are 
mapped by the RG onto a second nontrivial fixed point, 
V$ (1 1; this potential is purely repulsive, i.e., V$ (1) > 0 
(all 1) while the critical potential V! (1 has an attractive 
tail for large I: See Fig. 2 below. 

The domains of attraction of both V? and VS lie 
within the subspace of interface potentials V( l )  satisfy- 
ing (2). Within this subspace, we find exactly one 
relevant perturbation at V z  (1 with scaling index Xi  > 0, 
but only irrelevant perturbations at V$ (1 ). The critical 
exponent v~ for the divergence of the parallel correlation 
length fn at the critical unbinding transition is deter- 
mined, as usual, by v11 = l A l ;  the other exponents fol- 
lOw3A11,12 

Our RG calculations yield v11 =2.04 Â 0.05 for d -2 
which compares very favorably with the exact ~ a l u e l ~ " ~  
VII =2. This fact together with the exactness of the pro- 
cedure to linear order in V(1) (see below) indicates that 
our RG should be reliable and accurate for all d and, 
hence, be useful in analyzing other interface and mem- 
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brane problems.3*14 We also find that vn increases with d The results just summarized have been obtained from 
and diverges as d Ã‘ 3 -. This is unexpected since flue- an approximate nonlinear functional RG which is an ex- 
tuations are normally supposed to become less important tension of Wilson's approximate integral recursion rela- 
as d increases leading to vl falling to its mean-field value t i ~ n . ~ " ~  It acts in the space of functions, V(l),  which (i) 
vi, "1. An excellent fit to the data for 2 5 d  52.975 is vanish as l -++oo,  and (ii) are large and positive for 
provided by 1 --+ - w. To write the recursion relation transparently, 

(3) 
we introduce the energy-density and length scales 

~ ~ ~ ~ e - ~ ~ ~ [ ~ l n ( ~ / e ) + ~ e I ~ ~ ~ ,  

with e - 3 - d 2 0 ,  B =3,  and C=3.65. Thus, as u a t B ~ J , d d - h  ,+ =?f, ~ B T  dd-lP (4) 
d + 3 - we have "critical exponents for critical ex- Z p2 ' 
ponents" and, probably, logarithmic factors also! The 
changes in critical locus with d agree with standard ex- where 5 =(2n)ldS",, in which A is the r ~ ~ m e n t u m  cut- 
pectations: The region of the phase diagram in which the off impficitly embodied in (1) while1 b > 1 is the usual 
interface remains bound increases continuously with d  pati id rescaling factor. Then the initial potential 
(see Fig. 1 below). ~("(l) sV(l) is renormalized by successive applications 

1 of v ( ~ + ' ) ( / )  =B[vW)(l ) I  where16 

with ~ % ( 3  - d )  (for d ~ 3 1 . ~ ' ~  
Compared to Wilson's original m e t h ~ d , ~ " ~  the new 

features of our RG are (a) the normalization of the in- 
te ral in (51, which has been set to preserve the form of 
Vb(1) for large I, as required for interface problems, 
and (b) the specific definition of the scale 2, which was 
originally treated as arbitrary2-l5: The choice (4) ensures 
that our RG is exact to linear order in V for all b and d. l6 

In addition, (c) the "wave-function renormalization" em- 
bodied in (51, namely, x-+ x/b, l-*l/bc with 
~ w d ) ,  is to be regarded as exact. The analogous 
transformation of the order parameter has been used pre- 
viously for bulk critical phenomena, with 3 - d  replaced 
by 2 -d,2715 but in that case it has the significant draw- 
back that the exponent n is erroneously forced to van- 
i ~ h . l * ~  However, for interface unbinding transitions 7 
must, in vanish for all d, so that the chosen re- 
scaling is correct! 

The fixed point relation V* ( I )  -sK[V*(I)] reflects the 
choice of the origin for I. It follows from (5) that a 
translation, 1 -+ 1 -A/, leads to 

For d < 3, this implies the presence, at a fixed point, of 
an irrelevant (and, in fact, redundant) perturbation, 
QV*/9l, with negative scaling index -+. At d =3 
this perturbation is evidently marginal: Then the ex- 
istence of one fixed point would imply, via (6), a whole 
line of fixed points. However, such stationary fixed 
points can be ruled out in d ~ 3 . ' ~  Instead, we find only a 
line of isomorphous drifting fixed points, V^(.l), which 
satisfy 

1 
- 

factors ii and u in ( 5 )  by writing U ( z  =~(-^2Zz )/u; the 
recursion relation for U is (5) with u =-2als\, and, thus, 
no longer involves A. Now, initial potentials 

with s,u > 0, are appropriate for systems in which all mi- 
croscopic interactions are short ranged.6*7 Note the pres- 
ence of a hard wall which can be handled easily by our 
nonlinear RG but cannot be treated by the linear RG ap- 
proaches5"719 used previously. The control parameter w 
may be regarded as a temperature difference T? - T. 

Numerical iterations starting with (8) reveal a two- 

' unbound An 

with A/* > 0; for b =2 we get A/* =-0 .549(k~~/g)~ /~ .  FIG. 1. Critical loci for the potential (8) with u = 1 and vari- 
It is convenient for computation to absorb the scale ous dimensionalities d (calculated with b =2). 



VOLUME 57, NUMBER 19 PHYSICAL REVIEW LETTERS 10 NOVEMBER 1986 

dimensional separatrix in the three-parameter space 
(s,w,u). The intersection of this separatrix with the 
plane u = 1 is shown in Fig. 1 for various values of d. For 
fixed d, there is a locus w =wc(s) which divides the 
(s,w) plane into two parts. As a function of w in (81, the 
potentials U^ for N-+ = exhibit the following three 
types of behavior: (i) For w > we, the minimum of uw 
becomes deeper and deeper: This corresponds to the 
bound phase in which the interfacial separation remains 
finite. (ii) For w -we, do) is eventually mapped onto 
the nontrivial fixed point U*(z I= VF (̂ 2& ) / v  I which 
governs the critical unbinding transition. (iii) For 
w <we, the attractive part of u ( ~ )  decays to zero, and 
U^ is eventually mapped onto the purely repulsive fixed 
point U$ (z  which governs the completely unbound 
phase. 

The fixed point potentials, UF and US, for d =2 are 
shown in Fig. 2. The behavior for general d < 3 is simi- 
lar, the decay to zero being always faster than exponen- 
tial (and probably17 as rapid as e c z 2 ) .  When d-+ 3 - 
the location of the minimum diverges as 

;*(d) ;Ã A/& with A ~ 3 . 3 8 ,  (9) 

while its depth vanishes rapidly being well fitted by 

with Ac=^/51", Bc=18.75, and Cc=19.02 (for b=2) .  
When 8- 0 the repulsive part of the potentials UF and 
U$ becomes increasingly close and merges at d =3. At 
the same time, the attractive part of the rescaled and 
shifted potential U^z ) =U? (z* +z  )/ \ U?,min I appears 
to approach a well-defined function.16 

The relevant scaling index A l  is found by studying the 
RG flows near the fixed point. If u ( ~ ) ( z )  =UF(z) 

\ unbound 1 

FIG. 2. The nontrivial fixed point potentials for d =2 (and 
b -2). 

+ E ( z )  with E small, iterations yield u ^ ^ ~ ) ( z )  
(N +n) = U: (z ) + b n h ~  (z ); furthermore, the minima & 

are located close to z*. Thus 

serves as a good estimator for b. As remarked, the value 
Ai==0.49 found for d =2 is in good agreement with the 
exact valuel29l3 Al  =+; all the data are well represented 
by (3). 

The numerical results described above were computed 
with a rescaling factor b =2. Since our nonlinear RG is 
not exact, one must ask about the dependence on b. 
Naturally, the fixed point potential itself does depend on 
b: E.g., for d =2.975, we find U h s  == - 1.00 x l o 4  and 
- 1.29 x and z * ~  129.13 and 90.86 for b =2 and 4, 
respectively. On the other hand, the forms of the singu- 
larity in (9) and (10) seem independent of b.16 Further- 
more, the values of A1 for b =2 and b =4 differ by less 
than 3%. Thus, we expect the behavior for vu given by 
(3) to hold for other values of b with only relatively small 
changes in the parameters. 

The situation for hard-wall potentials (8) when d =3 is 
still a matter for debate. Within the linear RG, several 
scaling regimes arise depending on the parameter s6m: 
Initially wc =0 and v11 increases nonuniversally with 
~ l )  =s2/4 lnb; but vn becomes infinite for7" co 2 2, corre- 
sponding to an essential singularity as a function of 

1 T - Tc 1 .  In contrast, recent Monte Carlo simulations 
of wetting in an Ising model1' see only critical behavior 
as predicted by mean-field theory.19 The nonlinear RG 
presented here leads to the critical locus, w =wc(s), 
shown in Fig. 1 with we close to zero when sc 
=(8 ln2)lJ2==2.35 (CD =2). This is consistent with the re- 
su1t7l9 of the linearized RG which gives wcas  -sc>-O. 
Along this locus the value vl,== follows for we > 0 by 
continuity with d < 3: See (3). However, the precision 
of our numerical calculations is insufficient to decide 
whether wC actually vanishes for s <sc or merely be- 
comes exponentially small. 

For d < 3, we can study long-range perturbations at 
the fixed points. Thus consider a potential ~ ' ' ( 1 )  
= ~ ( l )  +^(')(I) with Â£(')( 1 =A(')//* as I -+ =. One 
can see analytically that the flows around V*(l) yield 
A 0 with 

w i th r  as in (2). As long as r > r, i.e., when v(') belongs 
to the SFL regime, these perturbations are irrelevant. 
But if E(')(I represents an attractive tail with r < T, it is 
relevant and we recover the weak-fluctuation regime with 
v~l= lAr .  Similarly the M F  regime is characterized by 
an initial potential containing an attractive and a repul- 
sive piece which are both relevant. 

In summary, we have shown that the SFL regime in 
the unbinding of interfaces is governed by two nontrivial 
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fixed points in a nonlinear functional renormalization 
group. These do not bifurcate from the Gaussian fixed 
point but rather from an unusual line of drifting fixed 
points [satisfying (711. Correspondingly, the critical ex- 
ponents exhibit singular behavior as functions of d. Al- 
though we have focused on interfaces subject only to  
thermal fluctuations, the same approach and bifurcation 
mechanism should apply for wetting in random systems3 
and for the unbinding of membranes.I4 
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