
PHYSICAL REVIEW B. VOLUME 36, NUMBER 4 1 AUGUST 1987 

Scaling regimes and functional renormalization for wetting transitions 

Reinhard Lipowsky* and Michael E. Fisher 
Baker Laboratory, Cornell University, Ithaca, New York 14853 

(Received 12 January 1987) 

Interface unbinding transitions, such as those arising in wetting phenomena, are studied in d di- 
mensions with general interactions. Three scaling regimes must be distinguished: a mean-field (MF), 
a weak-fluctuation (WFL), and a strong-fluctuation (SFL) regime. A simple picture clarifies the ori- 
gin and nature of the different regimes and correctly describes the MF and WFL critical behavior. 
In the SFL regime, however, this picture fails, as do more elaborate perturbative methods. To over- 
come this an approximate functional renormalization group is introduced: it acts as a nonlinear map 
in the space of interaction potentials, V(l), for two interfaces at a separation I. The formulation is ex- 
act to first order in V and embodies the correct scaling behavior at a continuous unbinding transition. 
In the SFL regime, it reveals two nontrivial fixed point potentials, V t  (1) and V*(l), which describe, 
respectively, the completely delocalized phase and the critical manifold for the unbinding transition. 
On approaching the upper boundary dimension, du =3, these fixed points do not coalesce with the 
standard Gaussian fixed point but, rather, mutually annihilate leaving a line of novel "drifting" fixed 
points. For d < 3, sufficiently long-ranged perturbations cause crossover to the WFL and MF re- 
gimes. Thus the functional renormalization-group approach yields a unified description of all scaling 
regimes. 

I. INTRODUCTION 

In many situations, the behavior of an interface (or 
domain wall or membrane) is constrained by external 
fields or by the presence of other interfaces. These exter- 
nal constraints usually tend to localize the interface. On 
the other hand, thermal fluctuations or fluctuations in- 
duced by quenched impurities lead to an interfacial 
wandering which competes with this localization. As a 
result, the interface may undergo an unbinding (or delo- 
calization or depinning) transition where it transforms 
from a localized to a ddocalized state. 

Various classes of unbinding phenomena can be dis- 
tinguished: (a) the delocalization of a single interface in 
an external potential. An example is the roughening tran- 
sition;' (b) the unbinding of two interacting interfaces: 
this is the mechanism behind the critical effects at wet- 
ting;2-4 (c) the unbinding of an assembly of interfaces 
which occurs at commensurate-incommensurate transi- 
tions4 and during the swelling of lyotropic liquid crys- 
tals. 

This paper mainly concerns the unbinding of two inter- 
faces. First. we discuss the construction of effective inter- 
facial models. Then, a simple picture is presented in Sec. 
I11 which shows that unbinding transitions can exhibit 
three different scaling regimes depending on the spatial 
dimensionality, d, and on the character of the microscopic 
i n t e r a ~ t i o n s : ~ ~  (i) a mean-field (MF) regime for large d 
and/or sufficiently long-ranged interactions; (ii) a weak- 
fluctuation (WFL) regime with nonclassical exponents but 
the same (trivially determined) phase boundaries as in MF 
theory; (iii) a strong-fluctuation (SFL) regime in which 
both exponents and phase boundaries are nontrivial. The 
critical behavior in the M F  and in the WFL regime is 
correctly given within the simple picture as can be demon- 

strated by more elaborate perturbative arguments. How- 
ever, in the SFL regime, both the simple picture and the 
perturbative methods are not applicable. As described 
briefly in a previous comm~nicat ion,~ we have introduced 
and applied a nonlinear functional renormalization group 
(RG) in order to study this nontrivial regime. This RG 
approach, which is an extension of Wilson's approximate 
integral recursion re la t ion ,  is described in Sec. IV. It is 
exact to linear order in the effective Hamiltonian. Some 
useful bounds on the behavior implied by these recursion 
relations are obtained in Sec. V. The numerical results 
obtained from this functional RG for short-range interac- 
tions are described in detail in Sec. VI. Two distinct non- 
trivial fixed points are found for interfaces subject only to 
thermal fluctuations. These fixed points bifurcate in an 
unusual way9 from a line of "drifting" fixed points at the 
upper borderline dimension d=3 rather than from the 
Gaussian fixed point as normally expected. The two fixed 
points describe the critical manifold and the completely 
delocalized phase, respectively. Long-range perturbations 
are considered briefly in Sec. VI D. Finally, Sec. VII con- 
tains a summary and a discussion of our results. 

11. INTERFACE MODELS 

In this section, we will discuss effective models which 
describe the fluctuations and interactions of two interfaces 
or domain walls. We motivate these models by reference 
to wetting phenomena.24 However, similar models can 
also be used to discuss different phenomena such as 
commensurate-incommensurate transitions and the swel- 
ling of lyotropic liquid ~ r ~ s t a l s . ~ ~ ~ ~ ' '  

Interfacial wetting phenomena arise in systems where 
three distinct thermodynamic phases, a, 13, and y can 
coexist. In such systems, the cry interface may contain, in 
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thermal equilibrium, a layer of the /3 pi-ase, see Fig. l(a). 
We will assume here that the system is not close to any 
bulk critical point. Therefore, the thermal fluctuations 
within the bulk phases a, /3, and y are governed by micro- 
scopic length scales. On the other hand. the thermal fluc- 
tuations can be correlated over a much wider range within 
the interfacial regions. Then, the interfacial correlation 
length, see (3.15) below, increases with increasing thick.- 
ness of the intermediate /3 layer. This hdppens if the tem- 
perature, T, is above the roughening temperature, TR,  for 
one of the interfaces bounding the layer. 

Each interface will have its own roughening tempera- 
ture. We will focus on the case in which the & interface 
is rough while the f3y interface is smooth, see Fig. l(bL 
Thus, we will in effect study a fluctuating a/3 interface in 
the presence of a rigid wall which may represent a solid 
surface. Our results do apply, however, equally well to 
the case where both interfaces bounding the /3 layer are 
rough. The equivalence of these two situations has been- 
shown previously.1291323 If both interfices are smooth, 
i.e., T < T@ and T < T& the correlations in the interfa- 
cial region will not grow significantly above those in the 
bulk phases. This situation which occurs, for example, 
for multilayering2 and commensurate-incommensurate 
transitions, is not considered here (but see, e.g., Ref. 11). 

To proceed, let x be the longitudinal coordinate 
(x 1, . . . , xd _ 1 )  and z be the coordinate perpendicular to 
the wall, and call the fluctuating distance of the afl inter-- 
face from the f ly plane l (x ) ;  see Fig. Kb). The free- 
energy functional or effective Hamiltonian for the interfa- _ 
cia1 configurations is then taken to be - 

The first term represents the elastic free energy of the aft 
interface, the second term the direct interaction free ener- 
gy of the interface with the wall. The model (2.1) impli- 
citly contains a small-scale, spatial cutclff, l/A, which is 
of the order of the intrinsic width of the interface, i.e., of 
the order of the bulk correlation lengths. 

A. Elastic free energy 

The elastic free energy controls the interfacial fluctua- 
tions when the interface is "free," i.e., completely separat- 
ed from the wall. The parameter E in (2.1) is the interfa- 
cial stiffhess. If both a and 0 are fluid phases, the interfa- 
cial tension, 2, is isotropic and 2 =2. If a and/or /3 are 
solid phases, the tension is anisotropic, i.e., 2=2(3) 
where 2 is the unit vector normal to the c$ interface. 
Quite generally, 2(6) attains a local minimum, say ZO, for 
A n parallel to a lattice axis. Here, this axis is taken to be 
the z axis; see Fig. 1(b). Since we assume that the @ in- 
terface is rough, the tension 2 is a smooth function in the 
vicinity of this minimum. If S(6) does not depend 
strongly on the azimuthal orientation of 6, the stiffness in 
(2.1) is given byl4-I6 2 =20+(d22/d62)o, where 6 is the 
angle between the z axis and the normal. If xi) depends 
on the azimuthal orientation, one should replace ~ ( v I ) ~  in 
(2.1) by the tensorial expression (al/axa )Zap(al/axp), 
where zap is a symmetric tensor. - 

Strictly speaking, the stiffness S which enters in (2.1) 
depends on the length scale of the interfacial fluctuations. 
For excitations on molecular scales, this parameter is 
determined by microscopic intermolecular forces. In the 
long-wavelength limit, on the other hand, 2 is given in 
terms of the interfacial tension 2 of a planar interface. 
This macroscopic stiffness is infinite for temperatures 
below the roughening temperature, TR, and zero at the 
critical temperature, Tc . As mentioned, we are concerned 
here with the temperature range TR < T < Tc which im- 
plies that the long-wavelength limit of the stiffness is 
finite. In this case, the scale-dependent part of 2 is a 
correction term and will not affect the interfacial critical 
behavior described below. 

B. Interaction free energy 

The interaction free energy, per unit area, of the inter- 
face with the wall is described by Vw(l) in (2.1). Near the 
a0 phase boundary, it has the generic form 

with V ( l ) - + 0  for I+ CO. The variable H measures the 
distance from the o$ phase boundary. In a fluid context, 

-- H is typically a chemical potential difference, 8p, measur- 
- ! ing departure from bulk coexistence. At a/3 phase coex- 

istence with H=0,  the interaction is given by V(l) alone. 
In general, V(l) may have several minima. Here, we will 

 focus on the situation where V(l) achieves a single 
minimum at finite or infinite I. This form is appropriate 

. -- - - F for the purpose of discussing phase transitions in which .-? .- 
= I IW interface unbinds continuously from the wall. 

To describe wetting phenomena, the precise form of 
V ( l )  depends on the microscopic forces between the parti- 

^^les in the a, /3, and y phases. Let us assume, for in- 
stance, that a and 13 are both fluid phases while y is a 

(a) (b) solid phase. Then, we can distinguish between fluid-fluid 

and solid-fluid interactions. If both types of microscopic 
FIG. 1. (a) A  rew wetting layer, f3, intruding between two bulk 

+ interactions decay at least exponentially for large separa- 
phases a and y and bounded by two interfaces af3 and f ly .  (b) tions between the molecules, one has17,18 
Specification of the c$ interface by its sepaiation, l(x), from a 

- -- 
rigid-wall interface, f3y. V(l)-- Wexp( -ml / ^J+Uexp( -" I / ! ^ )  , (2.3) 
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for large I, where m and n are two dimensionless con- 
stants with n > m. The parameter t.,, is the correlation 
length within the /? layer. The amplitude W will be re- 
garded as a basic "control" parameter or thermodynamic 
field varying, typically, through zero as the temperature, 
T, and/or a short-ranged surface field increases. If (i) the 
microscopic interactions decay faster than exponentially, 
one has (m,n ) = (l,2) for critical unbinding transitions. 
These values for m and n also apply if (ii) the microscopic 
fluid-fluid and solid-fluid interactions decay exponentially 
and the range, Ro, of the solid-fluid interaction satisfies 
Ro < +coo. For (iii) > Ro > +coo, on the other hand, l9  

one has (m, n ) = ( 1 ,k /Ro ). For tricritical and tetracriti- 
cal unbinding transitions, one has, for case (i), 
(m,n)=(l,3) and (m,n)=(l,4), respectively. 17 

If the molecules interact through power-law forces, the 
interaction V (1) has the general form6'2024 

Again, W is regarded as a basic thermodynamic field 
passing through zero as the temperature or a surface field 
varies. If both solid-fluid and fluid-fluid interactions vary 
as l/R ^ 'l'u for large separations R between the molecules, 
one r , s ) = ( c r - l , ~ ) ,  ( o - - l , ~ +  11, and 
(u- l,cr+2) for critical, tricritical, and tetracritical tran- 
sitions. Finally, one may also consider the interaction 

which would be appropriate for short-range fluid-fluid and 
long-range solid-fluid forces. z5v26 

Strictly speaking, the above expressions, (2.3)-(2.5), for 
V(l) represent the asymptotic behavior for large I. For 
small I, i.e., near the wall, V(l) will, in general, have some 
different I dependence. Near a solid wall, for instance, 
V(l) is expected to contain oscillations on a scale which is 
set by the size of the molecules.27 However, since we are 
interested in the critical behavior when /, the mean dis- 
tance of the interface from the wall, is large, we will ig- 
nore the details of V(l) for small 1 and will accept the 
above expressions for all positive values of I. 

Negative values of 1 are, in fact, unphysical since 1 is a 
distance. Thus, for consistency, one should supplement 
the interface potentials V(l) by the hard wall condition 

V(Ãˆ=C for 1 < 0 .  (2.6) 

Such a wall is, however, difficult to treat in a perturbative 
way. Furthermore, one might expect that the precise na- 
ture of the wall will not affect the critical behavior at the 
unbinding transition. Therefore, two other types of walls 
have been considered: (i) a soft wall, I' i.e., 

and (ii) a finite wall7 given by 

V(l)=c for 1 < 0 ,  (2.8) 

with c a positive constant, 

111. CONTINUOUS UNBINDING TRANSITIONS: 
SIMPLE PICTURE 

Quite generally, the interface potentials as given by 
(2.3142.5) consist of an attractive part which favors a 

small value of 1 and a repulsive part which favors a large 
value. For W> 0 and W50 ,  the potentials have a 
minimum at finite and infinite 1, respectively; see Fig. 2. 
By varying W, one can change from a net attractive to a 
net repulsive regime. A continuous unbinding transition 
occurs when W approaches, from above, a critical value 
We. For W > Wc, the attractive part is strong enough to 
bind the interface to the wall. For W <  We, on the other 
hand, the interface is completely separated from the wall. 

For fixed interaction, V(l), three different scaling re- 
gimes have to be distinguished: (a) a mean-field (MF) re- 
gime for d > d l ;  (b) a weak fluctuation (WFL) regime for 
d l  > d >di ;  (c) a strong-fluctuation (SFL) regime for 
d <di. The borderline dimensionalities dl and d2 de- 
pend on the form of V(1). In this section, we show that 
these dirnensionalities can be obtained, quite generally, 
within a simple heuristic p i c t ~ r e . ~ ' ~ ' ~  

A. Free interface 

First, let us consider the case W < We when the inter- 
face is completely separated from the wall. Such an inter- 
face is controlled by the effective Hamiltonian 

which should be compared with (2.1). The interfacial 
configurations can be characterized by the difference 
correlation function defined by 

in which the momentum integration extends up to a cutoff 
1 p I =A. The behavior of AC (x) for large x depends on 

the dimensionality. For d > 3, one finds 

for large x, with the nonuniversal coefficient 

FIG. 2. Typical interfacial potentials for positive and negative 
values of the parameter W. 
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which depends on the details of th~: cutoff. Clearly is finite for a bound interface as one would expect. Note 
AC ( ) also depends directly on the momentum cutoff. that is related to the difference correlation function 
For d =3, one has - 

A c ( ~ ) = + < [ ~ ( o ) - z ( x ) ] ~ )  , (3.17) 
~ B T  1 Â 

A C ( x ) = r - l n ( h ) + O ( l )  , (3.5) via 
2 2%- 

while, for d < 3, one obtains 

ke T It  is natural to assume that, for ell finite, AC(x) has a 
AC(x)=:Y0 \ X  1 3 - d + ~ ( l )  , 

2 
(3.61 scaling form AC(X)=^~W/LJ with, say, Wz)-Z2 for 

z - +  GO. At the transition point, i.e., for ,̂+ a, one must 
with the universal coefficient recover the behavior for the free interface. This implies 

y l  =y2=2c with c given by (3.13). Thus, for d <do=3,  
yo= 1 (lo 1 = i + l - d ) / : l r  (3 -d) , (3.71 the difference correlation function should assume the scal- 

ing form 

which is cutoff-independent. Thus, a free interface subject AC(x )= (kB~/ 'S . )@v(x /&)  , (3.19) 
only to thermally-induced fluctuations has a borderline 
dimensionality with 

d 0 = 3 .  (3.8) Y ( Z ) = Y ~ Z ~ ~  for z-0 , (3.20) 

Now, an interfacial segment of longitudinal dimension where Yo is given by (3.7). This scaling behavior is fully 

has, on average, a transverse dimension confirmed by exact calculations for d ~ 2 . ~  For the mar- 
ginal case d =do =3, scaling arguments lead to - - 

L ~ ~ A C C L ~ ~ ) ] ~ ~ ~  . (3 .9)  kn T 
Using (3.3)-(3.71, this relation leads to 

AC (x)=  ~ = - l n [ A & D ( x  /hi)] , (3.21) 
. - 2%-2 

~ ( k B ~ / 2 % - ' S . ) l n ( ~ l l ) ] 1 ~ 2  for d =3 , (3.11) - <&(z)=z for 2-0 . (3.22) 

and finally, From (3.18)-(3.22), the interfacial roughness follows as 

L ~ = [ ( ~ ~ T / ' S . ) T ~ ] ~ / ~ L ~  f o r d  < 3  , (3.121 . & [ ( k B ~ / ~ ~ m ] 1 / 2 $  for d < d o  , (3.23) 

for L Ã  large compared to l/A where we have defined a 4 ( k B ~ / 2 % - % ) l n ( ~ & ) ] 1 7 2  for d =do , (3.24) 
spatial anisotropy or roughness exponent'^ 

when ell is large. Note that the coefficient Y is, in gen- 
?=+(3-d) . l 3  eral, not equal to Yo as given by (3.7). Finally, for 

Thus, the typical fluctuations which might be pictured as d >do,. the typical amplitude for the long-wavelength ex- 
y.,umpsv of an interfacial segment with longitudinal di- citations depends on the microscopic cutoff A. From 

mension Lll ,  are characterized by a transverse dimension (3.10)9 One finds 

Ll  <<Lll for d >  1. - & [ ( k B ~ / s ) f l o ] 1 ~ 2 / ~ $  d > d o  . (3.25) 

In summary, the typical configurations of an interface 
B. Anisotropic scaling which is bound to the wall consist of large excursions 

with longitudinal and transverse dimension Â£,Ã and 61. 
Now, consider an interface whose mean distance /from= These humps are thus essentially confined between 

the wall is large but finite. In this case, its fluctuations ' zca/-ci and z=i+S^, see Fig. 3. As we will see, one 
are governed by two length scales, 6 and 61. For large x, has either />>& or /=cl. 
the correlation function 

. - - - 
c ( ~ ) ~ ( [ l ~ - l ] [ i ( o ) - i ] )  73.14) C. Effective interactions 

will decay in directions parallel to the interface as Now, we attempt to estimate the difference between the 

C(x)-exp( -x/&~) , (3.15) free energy of a bound and a free interface. This free- 
energy difference consists of three parts: (i) an energy 

where & is the longitudinal correlation lengthy This ex- _change resulting from the interaction with the wall which 
ponential behavior has been found both within Ornstein- we divide into an attractive part vA (1) 5 0 and a repulsive 
Zernike theory3728 and from exact calculations in d =2.3 part vR(l) >0: 
These calculations also show that the interfacial rough- 
ness, v(T)='v~(T)+ vR(i) ; (3.26) 
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FIG. 3. Illustration of a typical interfacial fluctuation show- 
ing the mean thickness, /, and the longitudinal and transverse 
correlation lengths, Â£; and fi, respectively. 

(ii) the increase in the bending energy;8 (iii) an overall loss 
of entropy resulting from the confinement of the interfa- 
cial fluctuations, l5 see Fig. 3. 

The increase Ae, in the bending energy per unit area 
arises from the gradient term .in the effective Hamiltonian 
(2.1). For humps with longitudinal and transverse dimen- 
sions gll and el, this increase can be estimated from (2.1) 
as 

Similarly, the loss of entropy per unit area, As, can be es- 
timated if we imagine putting rigid walls at z=i-gl and 
z=ai+&. Then, each collision of the interface with these 
confining walls leads to an entropy loss of order kB.15 
Furthermore, the density of collisions is of order 1/(ff - l. 
Therefore, we obtain 

Thus, the total change in free energy per unit area, Af, of 
, the interface resulting from the interaction with the wall 

can be written as 

with a fluctuation-induced part 

which on using (3.23143.25) becomes 

~ w ~ ~ ( l / A ~ ~ E i + l / $ - ~ ) ,  d >do  (3.31) 

&B~[(27T)-1~I l (~@-k I]/$, d =do (3.32) 

^r/^-l, d <do (3.33) 

with d0=3. In (3.331, we have used the fact that, for 
d <do, both the bending energy and the entropy loss give 
a contribution of the same order since (3.23) implies 

This property is special to thermally-induced fluctuations 
of the interface as studied here. It does not hold for inter- 

faces in systems with quenched impurities where the in- 
crease in bending energy has a more singular behavior as 
ell+ oo than does the entropy loss. 

For d <,do, it is useful to express & in terms of el and 
to define 

Then, one has 

for d =do, and 

for d < do, with a decay exponent 

D. Three scaling regimes 

Now, we will determine the equilibrium values of /, 
and Â£, by minimizing the excess free energy (3.29). First, 
consider d > d o  where UFL(&) is given by (3.311, and let 
us assume that the leading contribution to Af is given by 
the interaction V. Then, / follows from the condition 
aV(l)/al 1 i=O, while 6 is determined via the curvature 
from26 %/+d2v/dl2 1 as in standard M F  theory for 
bulk critical phenomena. If this expression for Ell is in- 
serted into (3.31), one finds that UFL(cn) is indeed a 
correction term as assumed. In fact, UFL(lI l )  as given by 
(3.31) can be obtained in a more systematic way from the 
one-loop contribution to the free energy. 

Next, consider d 23 ,  and the expression 

with V F  given by (3.351-43.37). If we postulate />>& 
we find again that Af = V A  (/I+ ~s.d) provided the direct 
repulsive interaction VR [I) decays more slowly than the 
fluctuation-induced repulsion vFL(I), i.e., 

In this case, one again recovers the results of MF theory. 
One can now check that the assumption lÃ̂ Â£ is self- 
consistently satisfied by calculating within the 
Ornstein-Zernike approximation. One indeed finds 1 
provided (3.40) is satisfied. 

For fixed interaction V(l), the upper critical dimension 
d can be obtained from 

where d d )  is given by (3.38). This simple criterion is ful- 
ly confirmed by hyperscaling arguments26 and by a sys- 
tematic perturbation expansion of the Hamiltonian ( 1.1) 
around M F  theory.6 Thus, for the power law interactions 
(2.4), d follows from s =r (d  which yields26 

On the other hand, if VR(I) decays faster than any power 
as in (2.3) and (2.41, one finds26 
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since MF theory is correct for d >  3, as mentioned, and 
one also has VFL( 1) >> VR ( 1) for d < 3. The same con- 
clusion follows from (3.42) in the limit s-+oo, which 
should correspond to faster than power-law decay. 

If the direct and the fluctuation-induced repulsions are 
equally important-see (3.41)-the roughness, 51, as cal- 
culated within Ornstein-Zernike theory is of the same or- 
der as the mean separation /, i.e., ti - ? for l~>w. Since- 
the interfacial fluctuations become more pronounced for 
lower d, this relation is expected to remain valid for 
d < d The possibility ^\. >>i can be ruledout since the- 
typical excursions are small-amplitude excitations in the 
sense that c1 see Fig. 3. If /--ti is assumed, 
minimization of the excess free energy (3.39) leads to the 
conclusion that the critical behavior is governed by 

provided 

as 1 4  oo . (Note that the case d =do == 3 with potentials 
decaying faster than a power law is excluded here.) In 
fact, this characterizes the intermediate weak-fluctuation 
(WFL) regime. In this case, the critical behavior can be 
obtained in a MF fashion if the repulsive interaction VR (1) 
is replaced by VFL(l) in (2.1). One then finds that the 
critical exponents acquire nonclassical values which de- 
pend on T, as given by (3.381, and thus, on d. However, 
the phase boundary is still given by W = Wc =0 as in the 
MF regime. Furthermore, the roughness i$i -- is found to 
satisfy 7-fl as postulated. The criticiilTxponents deter- 
mined in this simple way are fully conjirmed by (i) a sys- 
tematic perturbation expansion which can be solved self- 
consistently up to arbitrary order in ~ ( l ) , ~  and (ii) by a 
linear functional renormalization group which includes 

a terms up to first order in V(l), where V(1) is taken to 
have a finite wall as in (2.8L7 

For fixed interaction V(l), the scaling properties of the 
weak-fluctuation regime hold for d > a' > d2, where d2 is 
determined from 

with r(d)  defined by (3.38). Thus, for the power-law in- 
teractions (2.4) and (2.5), d2 follows from r =r(dz) which. 
leads to - 

- 

If VA(l) decays faster than any power as in (2.31, one has 

In such a situation, one may have several scaling regimes 
for fixed d=3. Indeed, various regimes have been found 
for the short-range potential (2.3) within the linear renor- 
realization group. 1 7 9  l 8 t 7 >  l9 

If one defines the critical exponent v~ via 

(̂W- wc )-"I1 (349) 

with Wc =0 in the WFL regime (dl  > d > d2), one finds 

FIG. 4. The reduced fixed point potentials, Uz(z), corre- 
sponding to the critical unbinding transition, and US (z), describ- 
ing the unbound, delocalized interface phase, for d=2 dimen- 
sions. 

for unbinding in the long-range interface potential (2.4). 
Thus, vll+ oo as d +d2 +. One must then ask what hap- 
pens for d <, d2, i.e., in the strong-fluctuation (SFL) regime 
in which 

The divergence of vli as d+d2 + at first seems to suggest 
that d2 is the lower critical dimensionality and that there 
should be no transition for d <d2. On the other hand, 
the minimization of Af =a VR (I)+ FA(/ )+  vFL(/) might 
still lead to a first-order transition if W in Vm is so 
large that Af develops a second minimum at finite 1 which 
can compete with the minimum at I = oo. Furthermore, 
exact calculations for d=2  show that, indeed, an unbind- 
ing transition remains present when d <d2  but it is actu- 
ally continuous rather than fir~t-order!~~'~' A part from 
the marginal case d =  3 with short-range interactions, 
there are no results for the SFL regime when d#2 since 
all the perturbative techniques employed in the WFL re- 
gime fail for the SFL regime. In the remainder of the pa- 
per, we show, within a nonperturbative renormalization- 
group (RG) scheme that, for fixed dimensionality 
d <do=  3, the critical points for all V(ll satisfying (3.51) 
map onto the same nontrivial fixed-point potential, V*(l). 
Hence, the whole SFL regime is characterized by univer- 
sal critical behavior. On the other hand, all potentials 
V (1) satisfying (3.5 1) which lead to complete interfacial 
separation are mapped by the RG onto a second nontrivial 
fixed point, V$ (I); this potential is purely repulsive, i.e., 
Vg (1) > 0 for all I, while the critical potential V?(l) has an 
attractive tail for large /; see Fig. 4. 

IV. RENORMALIZATION-GROUP APPROACH 

A. Resealing 

A renormalization-group method involves a scale trans- - - 
formation of the soatial coordinates and of the fluctuating 1 

""2+r= , - -y- 3 S 0  
field. For the unbinding transitions studied here, the ap- 
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propriate scale transformations are particularly simple as 
shown in this subsection. 

At the transition point W = We 0, the interface is no 
longer affected by the interaction with the wall, and as 
explained-see (3.6)- the difference correlation function 
behaves as 

for x  >> 1 /A and d < do = 3. Since one has 

with c=(3  -d)/2 by (3.131, the fluctuations are invariant, 
for length scales large compared to I/A, under the scale 
transformation 

This implies that the fluctuating field I does not have an 
anomalous dimension and, thus, that the critical point de- 
cay exponent is given simply by 

In other words, there is no "wave-function renormaliza- 
apart from the rescaling (4.4). Alternatively, one 

may consider the effective Hamiltonian (3.1) which is also 
invariant under the scale transformation (4.3) and (4.4) . . 

provided one does not rescale the interfacial stiffness 2. 
Indeed, the long-wavelength limit of 2 is finite for the 
systems considered here as discussed in Sec. I1 A. This is 
in contrast to a normal bulk critical noint where the cor- 
responding coefficient of the gradient term varies as g .  

The scale invariance (4.2) holds at the transition point 
W = We > 0. It should also apply when W exceeds We 
but remains sufficiently close so that Â£, is large compared 
to I/A. Thus, the correlations should be scale invariant 
on the intermediate length scales given by I/A Ã §  Ã§cn 
This expectation is fully confirmed by exact calculations 
for d =2.3 Thus, the scale transformation of any 
renormalization-group method when applied to continu- 
ous unbinding transitions should be given by (4.3) and 
(4.4). In the next section, we will describe a 
renormalization-group approach which embodies this 
property. 

B. Nonlinear recursion relations 

In this subsection, we describe the nonlinear recursion 
relations which we will use in order to investigate the in- 
terfacial model defined in Sec. 11. These recursion rela- 
tions are an extension of Wilson's approximate recursion 
relations. lo In its original form, this renormalization 
group has been applied to various bulk critical phenome- 
na. In this context, its major drawback is the fact that it 
necessarily leads to the vanishing of the critical exponent 
7. However, for the unbinding transitions studied here 
one has, indeed, 7 = 0  as argued in the previous subsec- 
tion. Therefore, these recursion relations are expected to 
be more reliable for the interfacial phase transitions con- 
sidered here than for standard bulk critical phenomena. 

One step of the RG consists of the following procedure. 

First, the fluctuating interface coordinate I is divided into 
a short-wavelength and a long-wavelength part: 

where 1 < and 1 > contain all Fourier components of 1 with 
wave numbers \ p \ < A/b  and A/b < 1 p 1 < A, respec- 
tively. Here, A is the high-momentum cutoff implicitly 
contained in the Hamiltonian (2.1), and b >  1 is the usual 
arbitrary spatial rescaling factor. The short-wavelength 
part I > ( x )  is now expanded in a complete set of suitably 
chosen eigenfunctions, En (x), which are taken to be local- 
ized both in real space and in momentum space. lo In real 
space, these eigenfunctions are assumed to be localized 
within a cubic cell with volume 0 given by lo 

( I - ~ - ~ I A ~ / ~ I T  for d =3 

( I - ~ - ' ) A / T T  fo rd  = 2 .  

In momentum space, on the other hand, they are sup- 
posed localized within the momentum shell A/b 
< lpl <A3' 

Now, the trace over the short-wavelength fluctuations, 
1 > ( X I ,  is performed in an approximate way. The various 
approximations involved have been described previously 
in the literature in some detail, so we will not repeat 
them here. The partial trace over l > ( x )  leads to a new 
Hamiltonian with momentum cutoff A/b. In order to 
bring this cutoff back to its original value A, the coordi- 
nate x is rescaled according to x+xl=x/b. At the same 
time, the fluctuations are also rescaled by putting 

with c=i (3-d)  as in (3.13). Note that this is just the 
scale transformation (4.3) and (4.4) which, as mentioned, 
must apply at an unbinding fixed point even in an exact 
RG method. As a consequence, the gradient term in (2.1) 
remains unchanged and the RG acts only in the function 
space of nongradient interactions as represented by the 
potential V(1). 

In order to write the recursion relation for the potential 
in the most transparent way, we recall (4.7) and introduce 
the scale 

for the free-energy density, and the length scale, 3(b),  
defined by 

= \ ( k B ~ / 2 ~ i ) l n b  for d = 3  . 
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Comparison with (3.16) and (3.2) shows that the lengt,h 
scale a can be viewed as the interfacial roughness arising 
from short-wavelength fluctuations. Then, the initial po- 
tential v ( O ) ( l ) ^ ~ ( l )  is renormalized according to 

with 

where the potential enters through 

in which f,= +(3 -d as before. 
Compared to Wilson's original m ~ i t h o d , ~ ~  the new 

features of our RG are: (a) the normalization of the in- 
tegral in (4.12), which has been set to preserve the form of 
V(1) for large 1 as required for interface problems; (b) the 
specific definition of the length scale Z(b) which was origj- 
nally treated as arbitrary:10 it transpires that the choice 
(4.10) ensures that our RG is exact to linear order in V 
for all b and d: see Sec. IV C below; (c) the trivial "wave- 
function renorrnalization" as given by (4.8) and embodied 
in (4.13) is to be regarded as exact in the present context, 
as discussed in Sec. I11 A above. 

In the infinitesimal rescaling limit b = e st (8t 4) the 
recursion relation (4.11) leads to a relatively simple flow 
equation. If one takes the b dependence of the scale fac- 
tors V(b) and Z(b) into account, one finds from a straight- 
forward calculation that this nonlinear flow equation is 

with the b-independent length parameter 

and energy scale 

For bulk critical phenomena, an approximate RG flow 
equation equivalent to (4.14) has been recently derived 
and examined independently by Hasenfratz and Hasen- 
fratz. 33 

C. Linearized recursion relations 

In this subsection, we show that the recursion relation 
(4.1 1) is exact to first order in the potential as a conse- 
quence of the choice (4.10) for Z(b). The linearized recur- 
sion relation which follows from (4.1 1)-(4.13) is 

Note that the factor U(b), which depends on the volume fli 
of the cells in real space, has dropped out here. Now, if 
~ ( ~ ' ( 1 )  has a Taylor expansion in 1, one can rewrite this 
linearized recursion relation as 

dl' ^+l)(/)=bd-'  * - 
f-* 6 a  

where we have put 

On the other hand, one may obtain the exact linear RG 
by an explicit integration over the short-wavelength fluc- 
tuations.' In order to do this, let us first rewrite the re- 
duced interface Hamiltonian as 

with terms 

Ã ˆ l [ l  = f d d - ' ~ ~ ( N ) ( l ) / k B ~  . (4.22) 

Now, we divide 1 (x) into a short-wavelength and a long- 
wavelength part as in (4.6). Since 1 > and 1 < have, by 
definition, no common Fourier component, one has 

The intermediate, unrescaled, renormalized Hamiltonian 
is defined as usual via the partial trace: 

with normalization 

No= f ~ l > e x ~ [ - % ~ { l > ] ]  . (4.25) 

On using (4.231, this leads to 
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Assuming again that v ( ~ ) ( I )  has a Taylor expansion the 
integration over 1' can now be performed explicitly to 
give 

1 f ~ j : Â ¥ e - * ~ ~ f ' l v ( ~ ) (  <+l  > )  

with 3 \b) as given by (4.10). Therefore, up to first order 
in the interaction potential V (or ̂ /I), (4.26) leads to 

Finally, one must rescale x and 1 as before, via 
x+xfsx /b  and l (x ' )=l<(x=bxl) /b$ see (4.3) and 
(4.4). As a result, (4.28) reduces to the expression (4.18) 
for the renormalized potential vE'^^( l )  computed to 
linear order from (4.1 1144.13). 

Thus, to first order in the interaction potential V, the 
recursion relation (4.1 1) reduces to (4.18) which is exact 
for arbitrary rescaling factor b > 1. It follows that our 
linearized RG has the appropriate semigroup property as 
can be checked easily by use of (4.18) and the identity 

which follows from (4.10). For infinitesimal rescaling fac- 
tor b =e8^ (5t-01, the linear recursion relation (4.18) 
leads to the flow equation 

where A  is given in (4.15). This equation was the basis 
of the study by Fisher and   use^ who denoted + A  by 
l/@za{̂, where gm is the bulk correlation length. 

D. Dimensionless variables 

In the balance of this paper, we study the discrete non- 
linear recursion relations with fixed b >  1, usually taking 
b=2. It is then convenient to absorb the scale factors 
3[b) and V(b) in (4.10) and (4.9) into the potential. Thus, 
let us define the rescaled quantities 

Both U and z are dimensionless; however, since both a 
and iJ depend on b, the rescaling also depends on b. 

The full nonlinear recursion function (4.12) now be- 
comes 

u^^sWU^- ^z)] 

Bs -id - 'In [ ( 2 / ~  f dy e -Y'-K(Y-" 
1 9  

(4.32) 

with kernel 

where c=+(3-d), as before, and the symmetry 
K (-y,z)=K (y,z) has been used in order to restrict the 
integration in (4.32) to y >  0. The linearized recursion re- 
lation which follows from this is given by 

The same recursion relation follows directly from (4.18) 
via the scale transformation (4.31). 'One should note, 
however, that the full semigroup property (i.e., for arbi- 
trary b) is not possessed by (4.34) because of the implicit 
dependence of z on b. 

E. Hard wall potentials 

It has been emphasized in Sec. I1 B that negative values 
of 1 are unphysical and that one should ideally study a 
hard wall, i.e., ~ w \ l ) =  w for I <  0 which, via (4.31) im- 
plies u(')(z)= w for z < 0. Such a wall cannot be handled 
by the linearized recursion relation since (4.34) would lead 
to u[^(z)= w for all z if U""(zi= w for z < 0. On the 
other hand, a hard wall is easily handled by the nonlinear 
recursion relation. Indeed, it is not difficult to see from 
(4.32) that the hard wall remains fixed at z=0  under sub- 
sequent iterations of this nonlinear recursion relation, i.e., 
one has 

for all N if the relation holds for N=0. For z>0 ,  on the 
other hand, (4.35) and (4.32) yield 

with K(y,z) still given by (4.33). Thus, compared to 
(4.321, the only effect of the hard wall is to introduce the 
upper limit b^z on they integration. 

V. SOME BOUNDS FOR THE NONLINEAR 
RECURSION RELATION 

In this section, we establish some general properties of 
the nonlinear recursion relations (4.32) and (4.36). Con- 
sider, first, two initial potentials, U )  and P o ,  satisfying 

A(Z) d Ã § " ( z )  P(')(z) 5 0 (all z)  . (5.1) 

We may now define the "partition function" 

with K(y,z) as in (4.33) but with u(^ replaced by P"' 
and 

The corresponding free energy is 

Comparison with the recursion relation (4.36) shows that 
one has 
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Furthermore, it follows from Schwarz's inequality that Fa 
is convex upwards as a function of a,34 which implies 

However, the relations (5.2M5.4) yield 

(i3F/Qa)o<0 . - - - - -- (5.7) 

Combining this with (5.5) then givss the inequality 
u(')(z) d 1 ) ( z )  (all z) so that the nonlinear recursion re- 
lation preserves the original inequality U 0. Finally, 
iterating N times gives - 

u ( ~ ) ( z )  5 P ( ~ ) ( z )  , (5.8) 

which is valid for all N >No  if it holds :'or N =NO. 

A. Upper bound 

Let us define the further partition function 

and the corresponding free energy as in (5.4).Evident- 
ly, we have 

where UC1)(z) is the result of applying the recursion rela- 
tion (4.36) once. For /?=0, on the other hand, one ob- 
tains - - 

It follows again from Schwarz's inequality that 5 is con- 
vex upwards as a function of /3 so that 

F,^Fo+(aF/ao)o . (5 12)  

Thence (5.10) and (5.1 1) yield the bound 

In the absence of a hard wall, one must extend the in- 
tegration range to ( - co , co ) 6nd replace S (b^z) by 
S ( co ) = 0. This leads to - 

where the right-hand side represents the result of using 
the linearized recursion (4.34). In terms of the original in- 
teraction potential V(Z), this becomes 

with Vnn determined by (4.18). As mentioned, the linear 
recursion relation for V has the semigroup property. 
Therefore, N applications of this bound lead to 

where is related to 9 in (4.10) by 

G ( b ) z Q ^ b ^ - ^ -  ~ ) / ( b ~ - ~ -  1) . (5. 

B. Lower bound 

A lower bound for U(l)(z) can be obtained from a 
lower bound for the kernel K (y,z). Thus, if one has 

one may conclude from (4.32) in the presence of a hard 
wall, 

Furthermore, if ~ " ' ( z )  is convex downwards as a function 
of z, one has from (4.331, by definition, 

Then, (5.19) leads to 

where S ( x )  is defined by (5.11). In the absence of a hard 
wall, this simplifies further: the last term may be dropped 
because S ( co ) = 0. 

Not all the interface potentials of interest to us are con- 
vex downwards for all values of z. Nevertheless we may 
obtain bounds valid near a hard wall even for potentials 
whiph have an attractive well and vanish for large z. 
Thus, suppose (a2U/az2) 0 for 0 z zo. The inequali- 
ty (5.20) is then valid for b^z +y ~ z o ;  furthermore, for a 
hard wall we have y < bcz. Thus (5.20) and thence (5.21) 
remain valid for 0 z zo /2b ^. 

We learn from these bounds that the nonlinearities of 
the full recursion relation are relatively weak. For exam- 
ple, for interface potentials v(O) which are convex down- 
wards and have no hard wall, a combination of (5.15) and 
(5.21) implies 

Furthermore, for potentials without a hard wall as studied 
in Refs. 17 and 7, the upper bounds (5.1 5) and (5.16) have 
a direct consequence for the phase diagram of the unbind- 
ing transition. As explained in the next section, the 
bound or localized phase of the interface corresponds to a 
RG flow in which the potential well becomes deeper and 
deeper. Therefore, these upper bounds imply that the full 
recursion relation predicts a localized state of the interface 
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whenever the linearized recursion relation leads to the 
same conclusion. Finally, the bounds described in this 
section provide useful checks on the accuracy of numeri- 
cal iterations of the full recursion relation. 

with 
VI. STRONG FLUCTUATION REGIME: 

NUMERICAL STUDY 

In this section, we will describe a numerical study 
based on the nonlinear recursion relation (4.32) for initial 
potentials UW(z) = V'')( fi Zz)/V which satisfy (3.5 1) 
and, thus, belong to the SFL regime. This reveals the ex- 
istence of two nontrivial fixed points for d < 3, as illustrat- 
ed in Fig. 4. These fixed points describe the critical mani- 
fold and the completely delocalized phase, respectively. 

A. Numerical determination of fixed points 

A fixed point, U*(z), of the recursion relation (4.32) 
satisfies 

However, it is important to realize that this relation 
reflects the choice of origin for z. It  follows from (4.32) 
that a translation, z - + z  - Az, leads to 

To first order in Az, this yields 

a u *  
=u*(z)-b-"?- , (6.3) 

az 

which implies the presence of a RG eigenperturbation 
with scaling index 

For d < 3 and d = 3, one has A2 < 0 and A2 =O and so this 
perturbation is irrelevant and marginal, respectively. 

It is found numerically that & is the leading negative 
scaling index for all d < 3 provided the initial potential 
U^)fz) decays to zero for large z faster than any power 
law. In this case, the vicinity of a fixed point can be con- 
veniently found numerically by using the observation that 
the RG acts like a simple translation, as in (6.2). In this 
way, two fixed-point potentials, Ut (z )  and U^{z), have 
been determined for various dimensionalities in the range 
2 < d < 3. Some of the results are shown in Fig. 4 and 
Fig. 6, below. 

The fixed point Ug (z) for the delocalized phase is easy 
to find numerically since it is completely stable within the 
space of potentials which belong to the SFL regime as 
specified by (3.51). Thus, within this space, the fixed 
point US has a domain of attraction of codimension zero: 
one may thus start with any purely repulsive potential or 
with any potential which has a sufficiently small 
minimum and under iteration the potential US (z) will be 
approached. Once one gets sufficiently close, the RG no 
longer affects the shape of the potential but merely shifts it 
according to (6.21, so that 

It then follows from (6.2) that further iterations of the re- 
cursion relation lead to 

Since the shape remains (essentially) unchanged one may 
say that one has attained a "drifting" fixed point. Howev- 
er, for d < 3, the successive shifts decay as b ̂  and one 
will eventually attain a true or "stationary" fixed point. 
Once the drifting fixed-point regime is attained the sta- 
tionary fixed point may be well estimated by 

with 

Thus, in practice, one may stop iterating the RG once 
(6.6) is well satisfied and then use (6.8) and (6.9) to deter- 
mine the fixed point. Note, however, that Am diverges 
when d +3- since c=J^(3-d). This reflects the fact 
that the translation becomes a marginal perturbation 
when d=3. 

The second fixed point, Uf(z), is more difficult to 
determine numerically since its domain of attraction has 
codimension one, i.e., there is one relevant perturbation 
within the SFL regime specified by (3.5 1). Consequently, 
in order to find U:(z) one must systematically vary one 
parameter, say p, of the initial potential U^tz) until this 
potential comes close to the attractive manifold of Uf, 
which represents the critical-unbinding transition surface. 
Then, as a function of p, the iterated potentials U^ for 
large N are observed to exhibit three types of behavior: (i) 
for a critical value p =pc, the potential U^ is eventually 
mapped onto the fixed point U*. In numerical calcula- 
tions, this behavior can be maintained only for a limited 
number of iterations owing to the effects of numerical 
roundoff; (ii) for p >pc, say, the minimum of u ( ~ )  be- 
comes deeper and deeper: this behavior describes, as in 
bulk critical phenomena,10'32 an "ordered" or bound 
phase in which the interfacial separation remains finite; 
(iii) for p <pc, on the other hand, the attractive part of 
u ( ~ )  decays to zero, and u'^ is eventually mapped onto 
the repulsive fixed point US which describes the com- 
pletely unbound phase. 

We have implemented this procedure in a detailed 
study of the RG trajectories for initial potentials of the 
form 

which are a special case of (2.3) when rescaled according 
to (4.31). In this case, one may vary either the parameter 
w or s. This leads to a separatrix alias a critical locus, 
w =wc(s), which divides the (s,w) plane into two parts as 
shown in Fig. 5 for various values of the dimensionality d. 
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FIG. 6 .  Reduced fixed-point potentials, U?(z) and US (z), in 
msionality d=2.8 (compare with Fig. 4) and the "drifting 

FIG. 5. Critical loci in the (w,s) plane for the potential 
u")(z) given by (6.10) for various dimensionalities, d, calculated 
numerically from the approximate functional renormalization 
group with b=2. The dotted-dashed lines indicate the critical 
loci expected for d=3 on the basis of the linearized functional 
renorrnalization group as studied by Huse and Fisher (Ref. 7); 
the values of s marked by a=+ and 0 = 2  indicate the distinct 
critical regimes emerging in that analysis (see also Refs. 17 and 
18). 

For comparison, Fig. 5 also contains ths phase boundary 
obtained from the linear RG in d = 3  when applied to ini- 
tial potentials as in (6.10) but with a "finite wall" that is 
Uw(z)=c for z < o . ~  The slope of this boundary dependls 
on c: for larger values of c, it intersects the phase bound- 
ary obtained from the full, nonlinear RG and becomes 
parallel to the w axis when c Ã‘> oo. - 

For w > wC(s) the interfaces are bound and  the poten- 
tial minimum of U^ increases foi large N. For 
w < wc(s), the interfaces are unbound or delocalized and 
the initial potential is eventually mappid onto the fixed 
point US (z). Finally, for w ̂ W~(S) ,  the potentials U^^z} 
for intermediate N remain close to th i  fixed-point U* 
which may thus be estimated with reasonable precision. 

The two stationary fixed points for d:=2 and d=2.8 as 
determined numerically for rescaling factor b=2 are 

fixed-point" potential, ~ ( z ) ,  remaining in d=3,  which is wholly 
positive. Note the breaks in the z axis; the location of the drift- 
ing fixed-point potential has no special significance. 

must describe the decay. A balance of the first and the 
second term leads to V*(l)-l-T with 
T=2(d - 1 )/(d -3) [see (3.3811. This behavior of V* is, 
however, not possible within the SFL regime as specified 
by (3.51). A balance of the first and the third term does 
not lead to a function V* which decays to zero for large I. 
Finally, if the last two terms in (6.12) are balanced, one 
obtains the Gaussian decay 

with A2 given in (4.15). This must represent the asymp- 
totic behavior of both fixed points Vg (1) and V*(l) for 
d <3. Likewise, via (4.31) and (4.15), both U$[z) and 
Uf(z) should decay as 

for d < 3  when b-1. 

B. Fixed-point potentials in the vicinity of d=3 

displayed in Figs. 4 and 6. The behavior for general d < 3 
is similar. The decay to zero at large values of z is always 

For d =  3 and [=0, the relation (6.2) becomes 

observed to be faster than exponential., Indeed, one can %[u*(z -Az)]=U*(z -Az) , (6.14) 
show that in the infinitesimal rescaling limit b =est 
(&+O), the fixed-point have' a Gaussian tail. valid for any value of Az. Therefore, the existence of one 
This follows'from the differential recursians relation (4.14) true or stationary fixed point would imply a whole line of 
which leads to such fixed points. However, this scenario is not realized 

in actuality as can be shown with the aid of the 
a v *  differential recursion relation (4.14). For [=0, this 

(d-l)v*+p--++~ln =0 (6.lI.) s.mplifiesto 
a1 

for a (stationary) fixed point V*. For large I, V V )  is -- Q V  
- at -(d-l)V+},Bln small and the linear equation 

a v *  a2v*  
-- - 

(d -~)v*+~-++A~-=,cI  (6.121 with A and B given by (4.15) and (4.16). Now, a (station- 
al  a12 ary) fixed point entails aV/at=O which leads to 
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This equation can be viewed as the conservative motion of 
a classical particle with positional coordinate V moving 
with time 1 in a potential 

which is convex downwards with a unique minimum at 
V=0. Now, the boundary condition for large "times" 1 is 

V(1)-0 for /-+m . (6.18) 

Therefore, the particle must eventually reach the 
minimum of <&(F). However, this is impossible unless 
V(l)=O for all 1 since (6.16) conserves the energy func- 
tional E =+(a~/al)'+<^{ V) for all I. Thus, the only true 
fixed point in d = 3  is the trivial fixed point V*(l)=O or 
U*(z)=O. For b > 1 the numerical studies confirm the 
identical conclusion; it can probably also be established 
analytically. 

Even though no true nontrivial fixed points exist when 
d=3, numerical iterations reveal a line of drifting fixed 
points, ~ ( z ) ,  which satisfy the defining relation 

with Az * > 0. For b = 2, we find Az * = 1.168. As evident 
from Fig. 6, these drifting fixed points prove to be com- 
pletely repulsive, i.e., ~ ' ( z )  > 0. 

It is clearly of interest from an analytic point of view to 
inquire how this behavior in d = 3  connects to that found 
for d < 3. Specifically, as - 

approaches zero from below, the fixed points US(z) and 
Uz(z) exhibit a special character which indicates that they 
bifurcate from the line of drifting fixed points in d=3. In 
the coordinate system in which the two fixed points Ug 
and U* are stationary, their position, as measured, say, 
by the location of the minimum or some fixed, positive 
value of U, moves out towards infinite z as E+O. To 
study this quantitatively the location, z *, of the minimum 
of Uz(z) is listed in Table I for rescaling factor b=2 and 

various values of d. One finds that 
- - - -- 

z*(d)ÃˆZo/  as 6-0- , 
with Zo2:3.34 (b=2). [Note that (4.31) and (4.10) imply 
I fsz (kB T 1nb / v ^ ~ z ) ^ ~  when d -+3. ] Similarly, it is 
convenient to define the abscissae zf and zif via 

Table I lists z \  which is found to diverge like (6.21) with 
the same value of Zn; indeed, the difference z?-z* ap- 
pears to approach a fixed value close to 0.14 when d 4 3 .  

As the fixed point potentials U$(z) and U:(z) move 
outwards, the shape of their repulsive parts become in- 
creasingly close to the shape of the drifting fixed point 
~ ( z ) .  This can be gauged qualitatively from Fig. 6 and 
can be evaluated quantitatively by noting the smooth evo- 
lution of the shape-sensitive differences 

' 

as d ~ f - 3 ;  see Table I and note that the values shown for 
d=3  correspond to ~ ' ( z ) .  On the other hand, although 
the minimum of Uf remains close to the steeply rising 
part of US-recall that z\Ã‘z*^0.1 as d-3-the 
repulsive parts of Uc* and US actually drift apart when 
d+3. This can be seen from the differences 
Azfizf-zl, listed in Table I, which appear to diverge 
roughly as AZ: sa AZ /ell3 when c-0, with AZ -  ̂1.5 in- 
dependent of k. [There may well be logarithmic factors 
present in the divergence of Az; see (6.22) and (6.33) 
below.] 

While the repulsive part of U;"(z) approaches the drift- 
ing fixed point ~ ' ( z )  the attractive part exhibits a scaling 
behavior. The depth U& = U: (z * ) rapidly decreases as 
- 0 ;  see Table I. The numerical values displayed in this 
table for rescaling factor b=2 are well fit by the expres- 
sion9 

with Ac =fi, Be = 18.75, and Cc = 19.02. Furthermore, 
as e-0, the rescaled and shifted potential 

TABLE I. Fixed-point parameters as a function of dimensionality d. The critical fixed-point potential, Uc*(z), attains its minimum 
at z =z*. The abscissae zi  and z l  are defined by Ut (z$)= U*{z{)=k 2 0  and then Azfk, =zi-zip, Az& =zf-zi, describe the shape 
of the repulsive parts of the potentials while Az,? =zf-zi measures the separation between US and U:. The data have been wmput- 
ed with rescaling factor b = 2. < . - -  - -  - - . , - -- - - 

d z * A 4 , 2  Azbaw ̂lt - &f - u~mIn ^.I 

2 0.714 1.51 O.O& 0.2& 0.040 0.22, 1.148 1.975 0.49 
2.8 13.09 13.59 0.284 0.360 0.31, 0.37, 1.91 3.64X lo-' 0.31 
2.9 29.39 29.73 0.343 0.39, 0.373 o.416 2.38 6.33 X 0.22 
2.95 62.46 62.70 0.38, 0.413 0.411 0.445 3.05 8 . 8 6 ~  0.15 
2.975 129.1 129.3 0.409 0.426 0.43.5 0.45* 3.90 1 . 0 0 ~  lo-4 0.10 
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appears to approach a well-defined function near its 
minimum: this is illustrated in Fig. 7. It should be possi- 
ble to derive (or correct!) these results by analytic studies 
of our recursion relation for b >  1 or of the differential 
form for b -+ 1 but we have not yet achieved this. 

C. Relevant short-range perturbations 

Within the SFL regime, there is onlj one relevant per- 
turbation at the critical fixed point W z ) .  The corre- 
sponding scaling index, Al, yields the exponent - 

for the divergence of the parallel corre ation length as 
defined in (3.49). This exponent has been determined by 
studying the RG trajectories in the vicinity of Uz (z). 

Consider an initial potential u(')(z) close to the critical 
manifold. Then, after N iterations of tie_RG, the poten- 
tial U^ is close to the fixed point U3.d. Typical values 
encountered for b = 2 were N^20 for d :=2 and N ĉ  50 for 
d=2.95. Then, one may expand the diiyerence u^- U: 
in terms of the eigenperturbations fi(z), of the linearized 
RG as 

with coefficients c,'̂ . 'The perturbation fi(z) has a.n 
eigenexponent Xi so that 

For initial potentials without power-law tails, the leading 
irrelevant scaling exponent is A;= -:-c, 
Thus, /L- <A2 for i >  2 and further iteration of the RG 
leads to 

with deviation 

FIG. 7. The rescaled and shifted critical iixed-point potentials 
for dirnensionalities approaching d=3, for which a definite limit- 
ing form appears to exist. 

provided b ' c  << 1 which justifies the use of the 
linearized RG. For sufficiently large N +M, the ir- 
relevant perturbations in (6.28) are numerically small, and 
may be neglected. It proves most convenient to use this 
relation at the minimum of u ( ~ + ~ ) ( z )  at location 

z = Z N + M = Z *  +O (El with E = c ~ ) f l t z * )  , (6.29) 

where z* is the location of the minimum of the fixed- 
point potential U?(z). Consequently, one has 

so that the ratio 

can be employed to estimate k\ via 

In practice, it proves effective to change the chosen pa- 
rameter in the initial potential U(')(z) until ^N} exhibits a 
plateau value as a function of N for initial potentials locat- 
ed on either side of the critical locus (which is a separatrix 
for the flows). In this way, the scaling index Al  has been 
determined for several values of d. The numerical results 
are collected in Table I for b=2. The estimate 
Al=0.49k0.01 found for d = 2  is in good agreement with 
the exact value Al = +. 35 It is remarkable that vll increases 
with d: this is quite unexpected since fluctuations nor- 
mally become less important as d increases leading to a 
decrease of vn towards its mean-field value. However, we 
find that vll= 1/A1 exhibits highly singular behavior as 
e = ( 3 - d ) 4 .  An excellent fit to the data in Table I for 
2 5 d 2.975 is provided by the divergent form9 

with B= 3 and C= 3.65 (for rescaling factor b =2). Thus, 
as d-3-, we have "critical exponents for critical ex- 
ponents" and, probably, logarithmic factors also. For 
d = 3, VB = oo follows by continuity from (6.33). Again, it 
should be possible to check the form (6.33) analytically. 

D. Long-range perturbations 

For d < 3, we can readily study the effect of long- 
ranged perturbations at the fixed points. Thus, consider 
an initial potential 

, U(')(Z)=U*(Z)+E(')(Z) , (6.34) 

which has a power-law tail of the form 

with c:) small. Then, the recursion relation (4.32) and ' 

the fixed-point relation (6.1) lead to U(l)(z) 
= u*(z)+E(')(z) with 
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correct to first order in E ) ,  where 

Now, we have seen that the tails of the short-ranged 
fixed-point potentials decay faster than exponentially and, 
indeed, are probably Gaussian for all b as for b-1. 
Therefore, the asymptotic behavior of E"'(z) for large z 
follows from 

Using (6.35) and writing E("(z) in theLsame form when 
z+ 00 yields 

Thus, power-law tails in the potential represent perturba- 
tions with a scaling exponent 

[where r=2 (d  - 1 )A3 -dl as before]. It is interesting to 
note that the same result follows simply by rescaling the 
potential E(')(z) according to (4.3) and (4.4) with z eel. 
Now, provided r >T, so that the power-law tail decays 
sufficiently rapidly, the initial potential (6.34) belongs to 
the SFL regime in accord with (3.51); these perturbations 
are then irrelevant. Thus, for r > T, one has universal crit- 
ical behavior with q = l / A 1  and A,i determined from the 
fixed point Uf . 

For r =T, the long-ranged perturbations become mar- 
ginal. In this case, nonuniversal behavior is to be expect- 
ed as has been shown explicitly for d=2, when 
r = r ( d  =2)=2, by transfer-matrix methods. 30 This be- 
havior is presumably governed by a line of nontrivial fixed 
points with U*(z)-l/zT for large z but we have not in- 
vestigated this point for general d < 3. 

Finally, let us consider perturbations of the form 

E(O) (Z)=  - c^/z^ c^/z5 , (6.41) 

with do' and c,") both small and positive: compare with 
(2.4). Then, the attractive part is governed by the scaling 
exponent (6.40) while the repulsive part likewise has scal- 
ing index A,=d-1-Â£;s=(r-s)t, If r < r < s ,  the at- 
tractive part is relevant and the repulsive part is ir- 
relevant: in that case, we obtain 

which is just the result (3.50) for the weak-fluctuation re- 
gime. On the other hand, if r < s  < r ,  both parts of the 
potential are relevant and grow under the RG. This is the 
regime governed by mean-field theory and all exponents 
are readily found by minimization of the total potential. 

Vn. DISCUSSION AND OUTLOOK 

We have studied the unbinding (or depinning or delo- 
calization) of interfaces subject only to thermal fluctua- 
tions. A simple picture was presented in Sec. I11 in which 
the direct interaction between the interfaces arising from 
molecular forces is compared with steric interactions in- 
duced by interfacial fluctuations; see Sec. I11 C .  This pic- 
ture clarifies the origin and nature of the various scaling 
regimes for critical (and, also, for multicritical) unbinding 
or wetting transitions. In addition, it gives quantitatively 
correct results for the critical behavior in both the M F  
and WFL regimes. 

An approximate functional renormalization group, 
which acts on the potentials, V(l), of interaction between 
interfaces, was introduced in Sec. IV and analyzed for ar- 
bitrary rescaling factor b > 1. The corresponding relations 
are exact to first order in V. In the infinitesimal rescaling 
limit, the functional RG leads to the simple but nonlinear 
flow equation (4.14) for the potential V(l). The bounds 
derived in Sec. V show that the nonlinearities (which al- 
low for infinite or "hard wall" potentials) have relatively 
weak effects. Nevertheless, the nonlinearities lead, as 
shown in Sec. VI, to the existence of two nontrivial fixed- 
point potentials, V: (1) a U: (z) and VZU) a U a z ) ,  in the 
SFL regime when d < d o  =3. On approach to d=3 these 
fixed points do not coalesce with the standard trivial 
Gaussian fixed point in the typical bifurcation scenario; 
rather, they mutually annihilate leaving behind a line of 
novel "drifting" fixed points;9 see Fig. 7. The fixed-point 
potential Vg (1) describes the completely delocalized phase 
of the interfaces. At this fixed point, all perturbations ly- 
ing within the SFL regime which, by definition, thus satis- 
fy (3.511, are irrelevant. The fixed point VZ(l), on the 
other hand, governs the manifold of critical unbinding 
transitions: at ~*(l), there is one relevant perturbation 
within the SFL regime; see Sec. VI C .  

The results obtained from the functional RG have the 
following important consequences. 

(i) The unusual bifurcation in d =do=3 explains why 
standard perturbation schemes analogous to the e expan- 
sion for bulk critical phenomena36 are not directly applic- 
able. 

(ii) The existence of the fixed point V x )  with associat- 
ed critical manifold of codimension one, leads to universal 
critical behavior within the SFL regime. 

(iii) The study of short- and long-range perturbations at 
V$ (1) leads to a unified description of all three scaling re- 
gimes. 

(iv) Reliable estimates for the values of the critical ex- 
ponents v,,, etc., in the SFL regime for d <do can be ob- 
tained by numerically iterating the recursion relations for 
V(1). 

As an alternative to the numerical techniques presented 
in Sec. VI, it would be useful to develop a more analytical 
approach. In particular, it seems possible to make some 
progress, on the basis of the differential flow equation 
(4.14). This equation is nontrivial because of the non- 
linearities in combination with the rescaling term 
f l V / a I ) ,  which represents a singular perturbation near 
d=3  ({=O). 

A more analytical approach should, in particular, help 
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the study of two topics which are difficult to handle by 
direct numerical techniques; namely: i) the critical be- 
havior for d =d2(r) as governed by (.3.47), i.e., on the 
boundary between the WFL and the SFL regimes. Here, 
nonuniversal behavior, presumably governed by a line of 
nontrivial fixed points, is to be expected as has been found 

when d =di(r =2)=2. In  addition, (ii) tri- 
critical behavior for do = 3 > d > 2, which should be 
governed by a new nontrivial fixed point potential, say, 
V f d ) ,  which is expected to exhibit a maximum at large I 
and a minimum at small 1. 

The renormalization-group approach introduced here 
has also been applied to the unbinding of tensionless 
 membrane^.^^'^ In this case, the boundary dimension is 
du=5 ,  which means that universal critical behavior, 
governed by a nontrivial fixed point V;", can be found in 
realistic three-dimensional systems subject to long-range 
power-law  interaction^.^^ Finally, the simple picture for 

distinguishing scaling regimes has also been used to study 
the unbinding of interfaces in the presence of random po- 
tentials which arise, e.g., from quenched impurities. 8'4 It 
would be most interesting to generalize the functional RG 
described here to suchcases so as to study the analogous 
strong fluctuation regimes. 
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