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I. INTRODUCTION 

Ordered lamellar phases are formed in many-component 
systems containing amphiphilic molecules. In these phases, roughly 
parallel lamellae or membranes are separated by a fluid medium. 
Examples are (i) phospholipid bilayers separated by water, and (ii) 
swollen bilayers separated by oil (or water). In the latter case, 
the membranes consist of thin layers of water (or oil) sandwiched 
between two monolayers of surfactant. Recent swelling and dilution 
experiments have shown /1-4/ that the membrane spacing can become 
large compared to the membrane thickness. During such swelling or 
dilution experiments, the membranes undergo an unbinding process 
from a state where they are bound together to a state where they are 
completely separated. 

The membrane separation is controlled by the intermembrane 
interactions. It is now generally accepted that one may distinguish 
two different types of interactions: (i) direct interactions between 
planar membranes which reflect the microscopic forces between the 
molecules / 5 , 6 / ,  and (ii) fluctuation-induced interactions arising 
from thermally excited undulations of the membranes as pointed out 
by Helfrich / 7 / .  From a theoretical point of view, it is clearly 
desirable to obtain a systematic description for the interplay 
between these two types of interactions. This paper reviews some 
recent work in this direction / 8 , 9 / .  

The next two sections contain a brief description of 
direct and fluctuation-induced interactions. Then, an effective 
Hamiltonian (or free energy functional) for the membrane 
configurations is introduced which serves as a starting point for a 
systematic theory, see Sec. IV. The statistical properties of this 
model can be investigated by a variety of theoretical methods. So 
far, the most powerful method is a functional renormalization group 
approach /8,10/ which is described in Sec. V. Then, two different 
types of unbinding transitions are discussed in Sec. VI and VII. 

11. DIRECT INTERACTION BETWEEN PLANAR MEMBRANES 

First, consider two planar membrane segments which are 
roughly parallel and, thus, have a constant separation, L? > 0. The 
internal structure of the membranes will be ignored, i.e., they will 
be regarded as featureless sheets or drumheads of thickness 6. The 
direct interaction between these membranes has the generic form 

for 42 > 0. The parameter P is (i) an external pressure / 5 / ,  or (ii) 
a Lagrange multiplier resulting from a constraint on the system / 9 / .  
The direct interaction, V(t), for P = 0 arises from microscopic 



forces between molecules. In addition to these interactions which 
operate for ! > 0, V(i) also contains a hard mall repulsion given by 

~ ( i )  = m for e < 0 

= 0  for!>O 

resulting from the steric hindrance of the membranes. 
For two neutral or uncharged membranes, the interaction 

V(!) is usually governed, for large i, by van der Waals forces. As 

2 4 long as retardation effects can be ignored, one has V ( Â £ )  -W6 /! m 
for large i where W is the Hamaker constant. Retarded van der Waals 

forces, on the other hand, will lead to V (i)= - 1/i5 which is 
m 

expected to apply for t? > 50 nm / 8 / .  Note that these effective van 
der Waals interactions between two identical membranes are always 
attractiue. For small values of 8 ,  two membranes separated by a 
water layer interact by repulsive short-ranged hydration forces 
/5,6/. For swollen bilayers separated by oil, one expects an 
additional attractive interaction as soon as the hydrocarbon chains 
of the surfactant molecules start to overlap. If the membranes are 
charged, they repel each other by electrostatic interactions. For i 
large compared to the Debye length, A_, of the ionic solution, this 

electrostatic repulsion decays exponentially 2: exp(-!A). If there 

are no ions between the membranes apart from counterions, A is 

2 3 infinite (in practise, A -10 -10 nm in water) and the electrostatic E- 
interactions lead to the Langmuir repulsion which behaves as 2: l/! 
for large i /6/. 

The direct interactions described so far have been known 
for a long time. More recently, it has been argued that, for 
i 1-10 nm, the intermembrane interactions are more complex and not 
completely understood /lI/. However, the process of unbinding 
studied here does not depend on the detailed form of the interaction 
V(i) but only on its gross features. Furthemore, the theoretical 
approach reviewed in this paper is quite general and can be applied 
to any form of V(i). In fact, one important result of this approach 
is a classification scheme by which one can distinguish different 
classes of direct interactions, V(i). 

In principle, the shape of V(! ) could be determined by 

experiments since, for planar membranes, the pressure P is given by 

Thus, one could calculate V(! ) from the measured values of P (! ) . 
Indeed, such a procedure has often been used for bilayers in water 
/5/. One must realize, however, that real membranes are, in general, 
not planar but deformed as a result of thermal fluctuations. In such 
a situation, the measurement of P(i) will determine an effective 
interaction which is already renormalized by membrane fluctuations. 
On the other hand, force measurements in the absence of thermal 
fluctuations are possible when the membranes are attached to mica 
surfaces /6,11/. 



111. FLUCTUATION-INDUCED INTERACTIONS 

Some years ago, Helfrich pointed out / 7 /  that thermal 
fluctuations lead to an effective r e p u l t s i u e  interaction between 
membranes. For spatial dimensionality d=3, he predicted that these 
undulations together with a hard-wall interaction as in (2) lead to 
the fluctuation-induced interaction/?/ 

where K. is the rigidity constant. Recent experiments indicate that 

this parameter is roughly given by K = 10-12erg for lipid bilayers 
/1,12/ and by K = 10-14erg for swollen bilayers in quasi-ternary 
systems /2-4/. 

It is instructive to rederive the effective repulsion as 
given by (4) from scaling arguments /8/. First, assume that the 
membranes are completely separated. Then, each membrane is governed 
by the effective Hamiltonian (or free energy functional) /13,14/ 

where !=Â£(.x measures the distance of the membrane from a reference 

plane with coordinate x=(x .,, . . . ,xdl). Here it is assumed that the 
spontaneous curvature of the membranes is negligible. Likewise, 
higher order terms arising from the mean curvature are omitted which 
is justified as long as (vL?)~ < <  1. Now, it follows from (5) that a 
membrane segment of longitudinal dimension, 

c a transverse excursion, LL - L,, , with 

exponent / 8 /  

L l ,  , will typically make 

the spatial anisotropy 

c = (5-d)/2 for d < 

On the other hand, if the membranes are bound together, the 
transverse excursions are limited and the largest humps have a 
typical size, f L .  Then, scaling arguments show that these largest 

humps or fluctuations have a longitudinal extension, E l ,  ,with /8/ 

where 'em-0(l) is related to the difference correlation function. For 

the Gaussian model in d = 3, one has %=0.125. Similar ideas have 

been presented by Sornette /15/. 
The largest humps or fluctuations of the confined membrane lead 

to an increase of the free energy per unit area as given by /8/ 

for d<5 with c-O(1) and decay exponent 



For d=3, the Helfrich interaction (4) is recovered provided one 
assumes that 5-EL. This relation is indeed valid for a hard wall 

repulsion, i.e., for V(Â£)=Vm(Â as given by (2) but does not hold 

in general: sufficiently long-ranged interactions V ( Â £  lead to 

f << e, /8,9/. 

IV. EFFECTIVE HAMILTONIAN FOR INTERACTING MEMBRANES 

So far, two types of interactions have been considered: 
(i) direct interactions between planar membranes, i.e., in the 
absence of thermal fluctuations, and (ii) fluctuation-induced 
interactions where the explicit form of the direct interaction V(t) 
has been ignored. Now, an effective Hamiltonian, 3t(.!), will be 
introduced in order to study the interplay between these two 
interactions in a systematic way. 

First, the local distance of two membranes from a reference 
plane is denoted by el(g) and S 2 ( ~ )  with ~ = ( X ~ , . . . , X ~ _ ~ )  as before. 

Now, deformations of these membranes are governed by So.{! }+S{e 2} 

where the effective Hamiltonian So has been defined in (5). 

Furthermore, the direct interaction beween the deformed membranes is 
taken to be v[e1(g)-12(g)]. It is then convenient to introduce new 

variables, e=el-e2 and i=(l +6 )/2. Then, the effective Hamiltonian 1 2  
separates into two terms, %{!} + %{S} , with S o  as given by (5) 

and /8,9/ 

This expression implicitly contains a small-distance cutoff, l/A:a6, 
where 6 is the membrane thickness. The Hamiltonian as given by (10) 
governs the unbinding process of the membranes. Obviously, it 
contains both an elastic free energy as in (5) associated with 
membrane deformations and an interaction free energy which is given 
in terms of V(Â£) Now, one can use the general rules of statistical 
mechanics in order to calculate thermodynamic uantities and 
expectation values of J2 via the oltmann factor, xpy-%/kBT]. 

V. FUNCTIONAL RENORMALIZATION 

The effective Hamiltonian (10) resembles the interface models 
studied in the context of wetting phenomena, see, e.g., Refs.16-18. 
Such models have been studied by a variety of field-theoretic 
methods. Not surprisingly, the same methods can be used in the 
present context. Here, I will describe a functional renormalization 
group (RG) approach /10,8/ which has been found to be most widely 
applicable. 

This functional RG which represents an extension of Wilson's 
approximate recursion relation /19/ preserves the form of the 
effective Hamiltonian (10): it acts as a nonlinear map in the 
function space of direct interactions, V(Â£) while the elastic term, 

(v2e ) ,remains unchanged. This implies that the rigidity , K, stays 
finite at the unbinding transition or, in field-theoretic language, 
that the variable Â does not acquire an anomalous dimension. This is 
indeed valid for the effective Hamiltonian as given by (10) as one 
can show by scaling arguments / 8 /  and within the loop expansion /9/. 



In order to write the recursion relation for" the RG in a 
transparent way, let us introduce the free energy density scale 

and the length scale, all defined by 

where A=l/5 is the high-momentum cutoff and b>l is the usual spatial 
rescaling factor. The length scale al can be regarded as the 

roughness of the membranes arising from small-scale excitations with 

wavenumber A/b<p$A. Then, the initial interaction v ( )  (< )sV(Â ) is 
renormalized by successive applications of 

where /8,20/ 

and c=(5-d)/2 as in (6). In the infinitesimal rescaling limit 
b=exp(5t) with 6t+O, one obtains the nonlinear flow equation given 

with cutoff-dependent scale parameters A and B. 
These recursion relations are very similar to the nonlinear 

recursion relation used in the context of wetting /lo/. Indeed, 
these two RG's differ only (i) in the spatial anisotropy exponent, 
c ,  which determines the rescaling factor of K ;  and (ii) in the 
choice for the length scale al which ensures that this RG is exact 

to linear order in V for all values of b and d. Therefore, most 
features of the functional RG found for wetting/lO/ have immediate 
analogies for the RG used here for membranes. 

By definition, a RG fixed point, v*, satisfies %[v* ( 8  )]=v* ( K  ) . 
This relation is trivially fulfilled for the Gaussian fixed point * 
V =O. Furthermore, numerical iterations of the recursion relation as G 

given by (13)-(15) reveal two nontrivial fixed points, v ( Â  ) and 
* 

V(Â£) for d<d0=5. In d=d0=5, these two fixed points do not 
* 

bifurcate from the Gaussian fixed point, VG=O, but rather from an 

unusual line of drifting fixed points as will be described elsewhere 
/21/, see also /lo/. 

Within the subspace of direct interactions, V ( Â  ) , which 
satisfy 



v(t) << l/tT for large t , (17) 

with T = 2(d-l)/(5-d), there is no relevant perturbation at the 
* 

fixed point V(t). Therefore, this fixed point has'a large domain of 

attraction. In particular, a hard wall repulsion, Vm(t ) , as given 
by (2) is mapped onto v:. Therefore v may be called the "hard wall 

fixed point". In contrast, there is one relevant perturbation at the 
* 

other fixed point, V ( t  ) ,  which governs the critical effects at a 

critical unbinding transition /a/. These features apply to general d 
< 5. In the remaining sections, I will discuss the physical case of 
3-dimensional systems. 

VI. COMPLETE VERSUS INCOMPLETE UNBINDING 

Consider two membranes which are in a bound state as the result 
of an external pressure or constraint corresponding to P > 0. As 

P -Ã 0, the mean separation, r, of the membranes can (i) attain a 
finite limit, or (ii) become arbitrarily large. These two cases 
correspond to incomplete and complete unbinding, respectively. It is 
intuitively clear that the behavior of the membranes for P -> 0 will, 
in general, depend on their direct interaction, V(t). If this 

interaction is repulsive, i.e., V ( t )  s; V(5) > 0 for large 8, the 

membranes will completely unbind as P + 0. Such a situation occurs, 
for example, for the Langmuir repulsion V(e) - 1/t arising from the 

... 

pressure of counterions. On the other hand, the direct interaction 
can also be attractive for large Â £  Then, one may write 

with lvA(t)1 Ã VR(t) for large e where V(Â£ and V ( t )  represent 
the attractive and the repulsive part of the interaction. In this 
case, the membranes can not unbind completely if V ( Â £  is 

sufficiently long-ranged and satisfies lvA(t)1 Ã 1 / Â  for large Â 

(in d=3). For real systems, the attraction comes from van der Waals 
forces which lead to VA(t) - 1/t4 or -l/g6 for large t as mentioned. 
Thus, one has 

~ ( t  ) 1 Ã 1/t2 for large t . (19) 

In the latter case, the membranes can unbind completely or 
incompletely depending on the strength of the attractive 
interaction, Vn(t) /a/. What happens can be determined within the - - 
functional RG approach described in Sec. V. Indeed, this RG provides 
a simple criterion for complete unbinding: the membranes unbind 
completely whenever they interact by a direct interaction, V(t), 

which is mapped onto the hard wall fixed point , v:. 
Now, assume that V(t) leads to complete unbinding. Then, the 

- 
mean separation, Â £  behaves as 



The critical exponent, - f i r  is correctly given by mean-field (MF) 
theory as long as Vm(t) = VR(t) >> l/t2 (in d=3). This applies, for 

instance, to the Langmuir repulsion which leads to / 9 /  

'I' = 1/2 for d = 3 . (21 

Within MF theory, the exponent 'I' reflects the nature of the 
underlying microscopic forces. On the other hand, for sufficiently 
short-ranged interactions with Iv(S}\  << l/t for large t,  one 

finds the universal value /8,9/ 

$I = 1/3 for d = 3 . (22) 

Thus, there are two scaling regimes for complete unbinding /9,18/: 
(i) a MF regime, and (ii) a weak-fluctuation (WFL) regime which is 
characterized by nonclassical critical exponents while the phase 
boundary is still given by P=O as in MF theory. 

These scaling regimes can be distinguished experimentally via 
the behavior of the scattering intensity, I, of X-rays which 
exhibit Laudau-Peierls singularities: 

- ( 2-Xm) 
I(qJ - (qz-qm) Ã 

where q = 2-n-m/5 and q is the momentum transfer perpendicular to 

the membranes /3,4,9/. In the WFL-regime, the exponent X is 

independent of 7 for large 7 .  In contrast, it depends explicitly on 
within the MF regime: e. g., one finds X - l / p  in the presence of 
the Langmuir repulsion / 9 / .  This qualitatively different behavior 
has indeed been observed in recent high-resolution X-ray experiments 
/22/. 

VII. CRITICAL UNBINDING TRANSITION 

Now, assume that P=O and consider again a direct interaction 
V(t ) = V(t ) + V(5) with 1vA(t) 1 Ã l/t2 for large Â as in (19). 

. - 

The parameters of such an interaction span a low-dimensional space. 
Within this parameter space, there is a region where the membranes 
are completely separated and another region where they are bound 
together /8/. Obviously, these two regions must be separated by a 
phase boundary. In fact, it turns out /8/ that the transition along 
this phase boundary is typically a second order transition at which 

- 
the mean separation, Â£ of the membranes diverges in a continuous 
manner. Thus, the parameter space contains a manifold of critical 
unbinding points. The critical behavior along this manifold which 
depends on two different scaling fields has been described in Ref. 8 
and will be discussed in more detail in Ref. 21. Recent experiments 
on a quasi-ternary mixture indicate that such a critical unbinding 
transition can be studied experimentally by changing the membrane 
thickness, 6 /23/. 

VIII. SUMMARY AND OUTLOOK 

In summary, the interplay between direct and fluctuation- 
induced interactions leads to critical phenomena associated with the 
unbinding of amphiphilic membranes. We have theoretically studied 
these critical effects both for complete unbinding, see Sec.VI, and 
for unbinding critical points, see Sec.VI1. Our theoretical results 
are confirmed by recent experiments. 



The theory for unbinding of membranes is far from complete. Some 
interesting problems which we currently investigate are: (i.) the 
marginal case with V(Â£) - 1/t2 which should lead to an unbinding 
transition of infinite order, (ii) tricritical unbinding transitions 
which should be governed by yet another fixed point, compare /lo/, 
and (iii) the influence of higher order gradient terms arising from 
the mean curvature. 
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