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A. fluid (or Ising-like) system in contact with a uniformly curved substrate, such as a cylinder or 
sphere, exhibits a surface phase diagram which is different from that when the substrate is flat. 
Using both an interface model and a Landau theory that includes surface field and surface cou- 
pling enhancement parameters, we find that the effects of curvature may be subsumed into an 
effective bulk (ordering) field. Complete and critical wetting transitions are thus suppressed. At 
bulk coexistence, the mean-field phase diagram exhibits curvature-induced prewetting and critical 
prewetting transitions. In d =3, finite-size effects smear the prewetting transitions that would oth- 
erwise take place in cylindrical or spherical geometries. The Landau theory employs a nonanalyt- 
ic, piecewise parabolic approximation to the usual quartic polynomial in the free-energy function- 
al. This approximation produces a global surface phase diagram with the correct topology, even 
though it is unsuited for the description of multicritical phenomena, such as wetting tricriticality. 
Other strengths and weaknesses of the approximation are described. 

I. INTRODUCTION 

Interfacial phase transitions1 and, in particular, wet- 
ting transitions of fluids in contact with walls2 have at- 
tracted much attention over the past decade. Most 
theoretical studies of such transitions have been confined 
to planar substrates. Such a geometry is convenient for 
calculations, but, from an experimental point of view, cy- 
l i n d r i ~ a l ~ ' ~  or spherical5 substrates are also accessible 
and convenient. In this paper, we give a systematic 
theoretical description of surface phase transitions for 
fluid systems with a scalar ( n  = 1 component) order pa- 
rameter on curved substrates. (We do not discuss layer- 
ing transitions, triple-point wetting, structured fluid- 
substrate  interface^,^ and related issues.) 

Two basic approaches to the problem are applied here. 
The first is to retain a fully local description of the sys- 
tem, with configurations specified by the value of an or- 
der parameter m at every point r in space outside the 
substrate. However, if the system is close to bulk two- 
phase coexistence, with a layer of the incipient /3 phase 
intervening between the substrate, say y ,  and the bulk a 
phase, a simpler description may be contemplated: 
configurations are described by the height I of the a/3 in- 
terface above each point p on the substrate surface, 
while configurations which have overhangs or droplets 
of one phase in the other are, by the usual arguments,' 
ignored. Such "interface models" have proven useful be- 
cause they seem to contain all of the physics essential for 
understanding surface phase transitions. These two 
theoretical pictures are complementary to a degree. 
When an interface model can be constructed, it is usual- 
ly easier to apply than a model for which bulk degrees of 
freedom must be treated explicitly. However, interface 
models are unsuited for the description of phenomena 

where the height of the @ interface is ill defined. For 
example, in the case of near-critical adsorption the only 
relevant length scale for the order-parameter profile near 
the substrate is the bulk correlation length. Such phe- 
nomena are not considered in this paper. 

We first discuss interface models in Sec. 11. The 
effects of substrate curvature can be seen with almost no 
effort within these models. The next two sections use 
the other framework, and wetting on curved substrates is 
studied within the context of simple Landau theory. 
Section I11 defines the model, with emphasis on two 
choices for the bulk Landau free-energy function: the 
standard analytic m 4  model and a piecewise parabolic 
ccapproximation.7'7 The familiar planar case is reviewed 
first in order to compare these two models. Using the 
latter bulk free-energy function, most quantities of in- 
terest can be calculated without recourse to numerics 
even in curved geometry; see Sec. IV. 

Both the interface and Landau-theory approaches lead 
to the result that the surface phase diagram is severely 
restricted as a result of the nonplanar geometry; this 
may be understood by observing that the curved 
geometry acts like an effective external ordering or bulk 
field which drives the system away from two-phase coex- 
istence, and thus suppresses critical or complete wetting. 
Only prewetting transitions, between two (3 layers of 
finite thickness, and the associated prewetting critical 
points remain. For the special case of zero "surface 
enhancement," this has been seen numerically within the 
standard Landau theory by Levinson, Jouffroy, and Bro- 
chard.8 

In Sec. V we return to interface models to show that 
for spherical and cylindrical geometries in dimension 
d =3, finite-size effects suppress the prewetting transi- 
tions, at least in principle. In practice one should find 
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rounded prewetting transitions; the widths of the transi- 
tions are calculated explicitly for the case of spheres 
when the wetting is driven by long-range forces. 

We conclude in Sec. VI with a brief summary and 
some remarks concerning an experiment of Beysens and 
l st eve,' who studied a suspension of small silica spheres 
in a binary-fluid mixture and saw a line of aggregation 
transitions which they tentatively interpreted as a 
prewetting line. We suggest that while the aggregation 
phenomenon is certainly related to the preferential ab- 
sorption of one component of the mixture at the silica 
surface, it might not be associated with a prewetting 
transition as such. 

11. INTERFACE MODELS 

Hamiltonians for interface models have been con- 
structed in various ways;7v915 these derivations assume 
that the temperature T is significantly smaller than the 
bulk critical temperature Tc so that bulk order- 
parameter fluctuations may be ignored. Interface Ham- 
iltonians generally have the form 

where the first term in square brackets is the standard 
capillary-wave energy, and V is the "interface potential." 

The question of what precise form to accept for 2 is 
not trivial. This issue has been discussed extensively in 
the context of capillary-wave theory for fluid inter- 
f a c e ~ . ' ~ ' ~  In general, 2 is not the surface tension a 
that one would measure, say by a capillary-rise experi- 
ment, but rather a bare or partially renormalized tension 
which depends on the short-distance cutoff implicit in 
the interface Hamiltonian. 

The interface potential typically may be expressed as a 
sum of several kinds of terms which have distinct physi- 
cal origins. Short-range terms, proportional' to e l ' c ,  
e21's, etc., with t the bulk correlation length in the 13 
phase, result from contact interactions between the sub- 
strate and fluid. Long-range terms, asymptotically pro- 
portional to l q ,  follow from van der Waals interactions 
[ q  =2,3 for nonretarded and retarded dispersion forces, 
respectively, as calculated by Dzyaloshinskii, Lifshitz, 
and pitaevskii19 (DLP)] or unscreened surface ionization 
 force^'^^'^ (for which q = 1 ). If 13 is not in bulk coex- 
istence with a, there is a bulk field term IAti where Aft  
has units of energy per volume and measures the ther- 
modynamic displacement from bulk a/3 coexistence. 
Often, close to coexistence, a sensible free energy for the 
metastable 6 phase can be estimated, and in such cases 
AH is just the difference in free-energy densities between 
J3 and a. 22 There is always a hard wall V(l < 0)=  oo so 
that the interface does not penetrate the substrate. 

The mean-field theory of interface models reduces to 
the study of how the minimum of V and its second 
derivative there depend on the coefficients of the terms 
in V. The minimum of V determines the equilibrium 
wetting-layer thickness 1, while V1'(l) determines the 
correlation length for interface fluctuations Q.  Critical 
behavior in which I diverges is described correctly by 
mean-field theory in d =3, provided sufficiently long- 
range terms are present.23 Thus V(l), for which in prin- 

ciple the long-range dispersion terms may be calculated 
by DLP theory,19 plays a major role in understanding 
experimental studies of wetting. 

So far, we have not included the effects of substrate 
geometry. However, this is easy to do within an inter- 
face model. Suppose that by an appropriate choice of 
Cartesian coordinates the substrate surface with radius 
of curvature ro  can be represented in the form 

with xi for T+ 1 < i < d  unrestricted. Thus in three di- 
mensions T= I describes a cylinder while ~ = 2  specifies a 
sphere. (Note that T=O effectively defines the planar sit- 
uation.) As the layer thickness I increases for ro < a,  so 
does the area of the a@ interface; since this stretching of 
the interface is a long-wavelength distortion the resulting 
term in V should, at  first sight, be simply 

where, as mentioned, a is the usual interface tension. 
This is tantamount to a generalized Laplace's equation. 
In the context of wetting, this contribution to V has been 
explicitly taken into account in the experimental work 
by Taborek and   en at or.^ In fact, this is not completely 
correct as it stands since there are two physical mecha- 
nisms which can make the interface tension radius 
dependent. The first is asymmetry between the bulk 
phases, which is present in most real systems and leads 
to curvature corrections that come as powers of 
8/(r0 + I  ) where 8 is the microscopic Tolman length.24r25 
The second is the finite-size su pression of long- 
wavelength capillary-wave modes." For our present 
purposes these corrections to a may be ignored. 

Because VT diverges when l ~ r o o  it is impossible for 
the equilibrium thickness I to become arbitrarily large; 
this conclusion is clearly not limited to mean-field 
theory. Thus those transitions in which 1 becomes 
infinite that occur in planar geometry are lost. This 
feature will also be seen explicitly in the Sec. IV in the 
context of Landau theory for the bulk order parameter. 

For another comparison with that Landau theory we 
may estimate the mean-field behavior of I at coexistence 
with only short-range substrate-fluid interactions 
present. If the leading term in the short-range potential 
is positive, then for ro >>I >>c the dominant terms in V 
are 

and in mean-field theory the largest possible wetting- 
layer thickness is 

This result is only the largest possible thickness because 
there might be a deeper minimum of Vat  much smaller 
I; to say more requires further knowledge of V. 

Finally, one might expect some of the terms already 
present in V for planar geometry to be modified in 
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curved geometries, specifically those resulting from 
long-range forces. For dispersion forces, rather than at- 
tempt to work out DLP theory in nonplanar geometries, 
let us apply an approach used by de ~ e n n e s . ~ ~  We re- 
strict the considerations to d =3. Assume an additive 
interaction energy between volume elements d x  and d y  
located at x and. y of the form -c(x)c(y) 1 x-y 1 -. 
The interaction strength c(x)  takes the values cy,  c Ã ˆ  
and CR, depending on whether x lies in the substrate or 
in the phases a or f3. The appropriate value of p is 6 or 
7, corresponding to nonretarded or retarded dispersion 
forces, respectively. In planar geometry, the derivative 
of the long-range part of V is then 

where W is the standard Hamaker constant2' 

W = - ~ T ( C ~ - C ~ ) ( C . , ,  -cis)/(p -2)(p -3)(p -4) . (2.7) 

In spherical geometry, the requisite integrals are all ele- 
mentary, and the corresponding result is 

This is weaker than the result (2.61, as one should ex- 
pect, since in the curved geometry there is less substrate 
to participate in the long-range interactions than in a 
planar geometry. There is no such analytically simple 
form for VLR(l;ro ) for cylindrical substrates, but in both 
cylindrical and spherical geometries the long-range term 
decays as for I >>ro, that is, one power of I fas- 
ter than theplanar result. Experimental investigation of 
the regime I > r0 to test the predicted crossover in power 
laws for VLR would be interesting. It might prove 
necessary in practice to reduce o, perhaps by the addi- 
tion of surfactants, in order to obtain sufficiently thick 
wetting layers. - 

111. LANDAU THEORY 

A. Introduction 

The primary effect of curved substrate geometry that 
was discussed in the preceding section is the fact that it 
leads to an additional term in the interface potential 
caused by the increase in surface area with 1. As shown 
below, this term can also be justified on the basis of a 
standard Landau theory in which the scalar order pa- 
rameter, my is a function of radial distance r. Explicitly, 
we consider substrates such as spheres or cylinders 
whose surfaces can be expressed as in (2.2); the distance 
r is measured from the axis xi=O, for all i with 
1 2 i T+ 1. Only in these geometries is it possible for 
the function m(r  ) alone to give a sensible description of 
the system. 

We will suppose that the fluid-substrate interaction is 
sufficiently short ranged, so that its effects may be ex- 
pressed entirely in terms of the surface order parameter 
m =m (ro ), i.e., by a "contact" term. As usual, fluctua- 
tions in the order parameter will be neglected, and hence 
capillary waves are not included in this treatment. 
Furthermore, the bulk phases in our model will be sup- 
posed symmetrically related (as in the simple lattice gas) 
so there should be no Tolman corrections to the surface 
ten~ion.~' 

Let f, denote the surface free energy in units of kT 
per surface site with area a d ' .  The Landau free-energy 
functional, which is minimized by the equilibrium 
order-parameter profile, can be put in the general form 

Although fs ( m ( r  ) } represents the surface free energy 
only after it has been minimized, we will often use the 
term "free energy" to denote this functional evaluated 
for an explicitly specified order-parameter profile. The 
factors l /a  and a / 2  are convenient but otherwise 
arbitrary-they are fixed so that in conjunction with a 
similar choice for the coefficient of m in (3.4), the ,bulk- 
correlation-length amplitude is a in the disordered phase 
and the order-parameter amplitude is unity. Note that 
my f ,  and f are all dimensionless. For the contact en- 
ergy f ( m i  ), which represents the fluid-substrate in- 
teraction, we take2' 

In magnetic terms, h i  may be thought of as a field ap- 
plied only to the surface spins, while g is a measure of 
the enhanced (or de-enhanced) coupling between surface 
spins. 

If fs is to represent the surface free energy, the bulk 
free-energy function f (m ) in (3.1) must satisfy 

f(m(oo))=O where m ( m )  minimizes f ( m ) .  (3.3) 

The standard phenomenological choice for the form of 
f (m 1, which we will refer to as the "smooth f," is 

with fo(t ,h chosen to satisfy (3.3). Note that, contrary 
to usual practice, the reduced temperature, t, is taken 
positive for two-phase coexistence, while the sign of the 
hm term is opposite that of the h 1m term in f these 
conventions are convenient since in the interesting part 
of the phase diagram h, t, and h l  are then all positive. 

Inspection of the equations above reveals that the sur- 
face free energy may be written in a scaled form. For 
t > 0 we define a set of scaled order-parameter, field, and 
free-energy variables 
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subject to boundary conditions at infinity, namely, 

and scaled radial distance and substrate radius variables F (M(  oo ) )=0  , (3.11) 

R =f i t1 '2 r /a7  ~ ~ = f i t ' / ~ r ~ / a  . the scaled version of (3.3), and at the substrate surface, 
(3.6) namely, 

Then the functional (3.1) may be rewritten as 

Fs[M(R )}=Fi(M1 1 

with 

and 

F(M)=: -+M~++M^+HM+Fo . (3.9) 

Thus the surface phase diagram of Nakanishi and Fish- 
er29 for this model (in planar geometry) in the half-space 
( t  > 0, h,h ,,g ) may be displayed in one diagram in the 
space (H ,Hl ,G) ;  such a phase diagram is sketched in 
Fig. 1. Even using the scaled variables, the full phase di- 
agram in curved geometries is four dimensional since 
another axis enters for the scaled substrate radius Ro. 

In general, the functional F, is made extremal, though 
not necessarily minimal, by solutions of the Euler equa- 
tion 

FIG. 1. Sketch of the scaled surface phase diagram using 
the smooth free-energy function F, (3.91, for H I  >0 in the two- 
phase region of the bulk phase diagram ( t  > 0) (following Ref. 
29). The diagram for H ,  SO is obtained by rotating the 
displayed region about the G axis by 180'. As in Ref. 29, the 
symbols C&, Tfy, W, and Ckre denote critical wetting, tricriti- 
cal wetting, first-order wetting, and critical prewetting, respec- 
tively. Also shown is a typical "physical section" of the phase 
diagram in which h i  and g are held fixed while t and h are 
varied. Not indicated explicitly, except in the physical section, 
are the first-order transitions which comprise the part of the 
H=O plane between the wetting line and the G axis and the 
continuous transitions (complete wetting) which comprise the 
remainder of the H =0 plane. 

However, the functional minimization can be accom- 
plished in other ways. The method we will apply is to 
find a family of profiles M(R ) which satisfy (3.10) and 
(3.1 1)-but not necessarily (3.12). The members of such 
a family may typically be specified by a single parameter. 
The free-energy functional (3.7), including the boundary 
term, is evaluated for the members of this family and 
minimized by the usual methods for minimizing a func- 
tion, since FAM(R ) ]  now depends, in effect, on only 
one variable. There are several advantages of this ap- 
proach over the usual one. (a) Minima are more readily 
distinguished from maxima and saddle points. (b) It is 
easy to see when the free-energy functional becomes un- 
bounded below [so that no solution of the Euler equation 
subject to the usual boundary conditions (3.1 1) and (3.12) 
is the global minimum]. This unphysical situation will 
arise in part of the surface phase diagram as a conse- 
quence of the approximation described in the next para- 
graph. (c) The boundary condition at the substrate sur- 
face serves as an independent check, since it will general- 
ly be satisfied by the equilibrium profile. Finally, if there 
are several competing minima, one will need to evaluate 
the free-energy functional for various M ( R  ) even within 
the usual approach. Thus our method requires no more 
calculation than the usual one, at least when the calcula- 
tions are done analytically rather than numerically. 

B. Double-parabola approximation 

Unfortunately, for T>O the differential equation (3.10) 
with the smooth F, (3.91, defies exact solution. If 
dF/dM were linear in M, the equation could be easily 
solved in terms of modified Bessel functions. Thus one 
is motivated3' to approximate the smooth F in a piece- 
wise parabolic fashion. For H =0, the simplest choice is 

which has minima and second derivatives at  the minima 
which match those of (3.9). For H#O, there are several 
conceivable extensions of this approximation. The most 
straightforward is to add H M  to (3.13) and adjust the 
"constant" Fo to satisfy (3.3). A further shift in M 
yields the F ( M )  which we will adopt as the "double- 
parabola approximation," or DPA,' namely, 

where it has been assumed that H > 0. In this model, 
the thermodynamic displacement from coexistence, A f l  
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of Sec. 11, is directly proportional to the scaled bulk field In the remainder of this section, we consider aspects 
H and is given explicitly by AH = 2 ~ t  '( k~ / a  of the DPA in planar geometry for comparison with re- 

lated results in curved geometries that will be derived in 
C. Planar case Sec. IV. 

It is informative in the first place to compare the 
phase diagrams for the Landau theory in the standard 
planar geometry using both the smooth F and the DPA. 
The solutions of (3.10) with the DPA are not controlled 
approximations to solutions with the smooth F. Howev-. 
er, we may expect the approximation to get some- 
features of the phase diagram qualitatively correct: it 
should do particularly well near coexistence, where the 
order-parameter profiles are dominated by the shape of F 
near its minima. Thus the behavior of the prewetting 
surface at small I$ should be described correctly by the 
DPA. The DPA serves as a poor approximation tothe 
smooth F when the details of the behavior near its cusp 
are important as, for example, at critical prewetting. 

When r = O .  the differential equation (3.10) has a first- 
integral2 and calculation of t h e  surface phase diagram 
for any F reduces to a problem in finding roots, 
differentiation, and quadrature. Surface phase diagrams 
calculated in that way for the smooth F and the DPA, 
are sketched in Figs. 1 and 2, respectively. The critical 
wetting lines are the same in both casesY7 but the critical 
wetting, first-order wetting, and critical prewetting lines 
in the DPA meet with unphysical discontinuities in slope 
at the wetting tricritical point. The approximation is 
thus not useful for studying tricritical or higher-order 
multicritical phenomena. The behavior at the other end- 
point of the DPA wetting curve is also unphysical, as 
will be discussed in more detail below. 

Another way to calculate the surface phase diagram 
for the DPA was described after Eq. (3.12). This 
method is briefly sketched here since it is readily gen- 
eralized to r#O. The general solution to (3.10) is 

where A+ and Bk are constants of integration. Howev- 
er, the continuity of M(R ) and M1(R ) when M =H/2 
must be required, and the boundary condition (3.11) 
must be satisfied. When H=O the DPA has two 
equivalent minima, at M = k l ;  in that case assume 
H =0+ so that M ( co ) = - 1. If, as explained, we now 
neglect the boundary condition at the substrate surface, 
for H > 0 there are two classes of solutions in 0 < R < co : 
(i) "dry," with M <H/2  everywhere, and (ii) "wet," with 

. the scaled surface order parameter M1 > H/2  so therep 
exists a "connection point" Rc > 0  where M(Rc )=H/2. 
At coexistence, a free interface at infinity between the 
M = k l  phases contributes only a finite amount (a) to 
the scaled free energy F,; thus when H =0 one must also 
consider a third class of solutions: "completely wet," 
with M i  1, and M( co )= 1. Each class of solutions is a 
one-parameter family of functions whose free energies 
are easily evaluated. Thus, as anticipated, a functional 
minimization problem has been turned into a problem of 
minimizing a few functions of a single ~ariable.~' 

1. The unphysical region and F^y 

Consider the dry solutions: 

M(R ) = ~ _ e - ~ - l ,  B _  l + H / 2  (3.16) 

where the constraint on B _  ensures that M I  <H/2. 
When the free energy is evaluated as a function of B-, 
one obtains 

F ~ ~ ~ ( B - -  )=~T~-G)B? +(G-HI)^-  +(HI-*GI . 
(3.17) 

Thus (a) when G <fi the minimum dry solution is 
- given by 

in agreement with the solution of the boundary condi- 
tion (3.12) using the form (3.16) for M(R ), provided that 
B *_ <,1 + H  /2. If this latter condition is violated, the 
smallest Fdry is achieved with B _ = 1 + H  /2. 32 Howev- 
er, (b) for G > v'2 the coefficient of B 2. in (3.17) is nega- 
tive so the free energy is unbounded below as B. 
diverges to - CO: this corresponds to the unphysical re- 
gion indicated in Fig. 2. The smooth F avoids this ca- 
tastrophe because the M~ term causes the integral con- 
tribution to the free energy, which is 

in (3.17), to grow faster than quadratically as M i  -+ - a. 

FIG. 2. Sketch of the scaled surface phase diagram based on 
the double-parabola approximation, (3.14), using the same con- 
ventions and notation as in Fig. 1. In the half-space G > _V'l, 
the approximation gives unphysical results. In addition, as 
G& along the prewetting critical line [Eq. (3.24)] H 
diverges to + co while H I  remains finite. Note that at bulk 
coexistence (H=o*) in curved geometries, one finds qualita- 
tively the same phase diagram if the ( k ) H  axis is relabeled 

indeed, the agreement is quantitative sufficiently close to 
the ( H I  , G ) plane. 
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2. Wet solutions and prewetting at small H 

Wet solutions are given by (3.15) with the coefficients 
determined by the continuity of M and its first derivative 
when M =H/2, that is, at R =Rc. This "connection 
point" is also a good measure of the scaled wetting-layer 
thickness L, so in the planar case we set L =R,. A sim- 
ple calculation leads to an expression for the surface free 
energy for wet solutions parametrized by L, which we 
write as33 

where 

For H1 > -G > V^2 and small H, the value of L which 
minimizes the free energy is found to be 

as expected on the basis of a phenomenological interface 
potential [recall Eq. (231. 

The prewetting surface is characterized by equilibrium 
between wet and dry order-parameter profiles, i.e., 
Fwet(Hl,G,If)=Fdry(Hl,G,H). This surface is bound- 
ed on one side by the wetting curve and on the other by 
the locus of prewetting critical points. To calculate the 
prewetting surface at small H, near the wetting curve, it 
is enough to retain the dominant terms in Fwet for 
L 4, namely, 

(3.22) 

The first two terms alone determine L:, while the last is 
required in order that the approximate free energy 
reproduce the leading variation with H. Then one may 
set F (B*_)=F~,~(L:) and use the fact that the 

dry 
prewettmg surface at small H is close to the wetting 
curve so that H, =(v/2-G )/2. The result is the 
prewetting surface 

The H lnH dependence of the prewetting surface as 
H + 0  reflects the thermodynamic requirement,34 a "Cla- 
peyron" relation, associated with (3.2 1). 

3. The prewetting critical line 

As the locus of prewetting critical points is ap- 
proached along the prewetting surface, the wet and dry 
order-parameter profiles in equilibrium with each other 
merge into a single profile. The equation of this locus 
for the DPA is 

This result may be derived from either the first-integral 
method mentioned above2 or the simultaneous solution 
of two relations which must hold on the prewetting criti- 
cal locus, namely, FLt(L=O)=O and Fkt(L=O)=O. 
(These assert that the minimal wet profile satisfies 
M l  =H/2; furthermore, the former is equivalent to the 
condition B *_ = 1 + i H  and thus the minimal dry profile 
also has Atl =H/2.) A comparison of (3.23) with (3.24) 
reveals that the value of H as a function of G along the 
prewetting critical locus is a relevant scale for H. 

IV. DOUBLE-PARABOLA APPROXIMATION 
IN CURVED GEOMETRIES 

The program which was carried out in Sec. I I IC for 
planar geometry will now be implemented in curved 
geometries. For simplicity, the calculations will be per- 
formed at bulk coexistence, with H=O+. The main 
goals of this exercise are to show (i) that for large 
enough R o  the effects of curvature are identical to those 
produced by a bulk field, with the effective H given by 
HeF=T/R0 in accord with the interface model of Sec. 
11, and (ii) that the topologies of the phase diagrams in 
the spaces (H1,G,H, l /Ro=0)  and (Hl ,G,H=O,l /Ro)  
are the same. These features of wetting on curved sub- 
strates should hold for any sensible choice of F. We will 
also examine the interesting, unexpected, but probably 
model-dependent behavior of the curvature-induced 
prewetting critical locus as a function of r. 

A. General solutions for arbitrary T >  0 

The first step is the calculation of explicit forms for 
order-parameter profiles, which are solutions of 

with M (  oo )= - 1. Unlike the planar case, there are only 
two classes of solutions at coexistence, namely, "dry" 
ones, with M <0 everywhere, and "wet" ones, which 
cross M=O at R. Rn.  The third class of solutions that 
arose in the planar case, those with an interface at 
infinity, are lost in the curved geometries since the free 
energy per surface site diverges as the interface is pushed 
to infinity. 

The general solution of (4.1) for unrestricted M is the 
sum of the particular solutions M =*l and the general 
solution of the homogeneous equation 

with the order v set to zero. It is easily verified that two 
independent solutions of this equation are 

with p =+( r - l )  while I and K are the standard 
modified Bessel  function^.^' Note that the geometric pa- 



rameter r has been suppressed; when no argument is in- 
dicated it should be assumed to be R. A subscript 0 will 
denote evaluation at R = R , for example, Xlo =Rl (R  0 1; 
likewise, a subscript c will denote evaluation at R =Rc. 
These functions satisfy recursion, derivative, and Wron- 
skian relations analogous to those for the usual modified 
Bessel functions, which are useful in several of the calcu- 
lations described below. 

The general solution to (4..1) may now be written as 

provided G <V2J{10/&,=~. For G > S  the DPA 
breaks down in the previous way; thus there is an un- 
physical wedge in the space ( H I ,  G, 1 /R ). 

To calculate the curvature-induced prewetting surface 
at large Roy the asymptotic expansions of the modified 
Bessel functions at large argument can be used to obtain 
an approximate expression for Fdry(Â£*_} It is sufficient 
for our purposes to note that Xl0/XO0 = 1 +r/2R 
+O(R {' ). Then, if Fdry denotes the free energy in a 
planar geometry [see (3.711, we obtain 

where A * and S_ are constants of integration. Consid:_ - where B *. is given in (3.18). 
er first dry solutions. -- 

B. Dry solutions C. Wet solutions 

Order-parameter profiles that never cross M =O are Wet solutions cross the M axis at Rc, and this connec- 
given by tion point provides the natural parametrization of the 

M(R )=S_Ro-1, Â£ < l /Xm . ( 
solutions. The matching conditions at Rc, namely, 

-- M(R:)=M(R;)=O and Mt(R$)=Mt(R;), lead to 
Inserting this into (3.7) and carrying out the integration the relations 
vields 

The minimal dry solution is given by between Rc and the constants in (4.4). 
With A* and S_ specified as here, one can write 93- = min(S*., 1 /&I 

(42)- down Fwet using (3.7). That integral can be evaluated 
E = ( H ~  - G ) / ( ~ ~ ^ ~ ~ - G X ~ )  , - 

exactly with the result 

This is not at all illuminating. But, in the limit of large 
ROY asymptotic expansions for the modified Bessel func- 
tions are again applicable, and Fwet may be expressed 
more simply. If one defines the scaled wetting-layer 
thickness by 

L=Rc-Ro , (4.1 1)- 

and assumes L <<Roy the asymptotic expansion may be 
followed by a Taylor expansion in L /Ro. Then the 
dominant terms in the expansion of the free energy are 

1 r 
Fwet(L)=--- ( H ~  +G)eL 

2 Ro 
- 
- 

r +- - ( f i - G ) e Z L + f i - - - - ~ .  
8 Ro I' Ro 

(4.12) 

Comparing this with (3.221, one sees that when Ro is 
large, r /Ro plays the same role as a bulk field H. Furth- 
ermore, since Fdr,,(S*_ ) -Fdry( B *_ ) = 0 (R ) [recall 
(4.8)] rather than 0 ( 1nR ; ), the curvature-induced 
prewetting surface for small l/Ro is given by (3.231, 
with H there replaced by the effective bulk field r/Ro. 

In fact, r /Ro is exactly what one expects as the 
effective bulk field, on the basis of the simple interface 
model. Let us modify the definition of the interface po- 
tential V given in Sec. I1 somewhat, and take it to have 
units of kT per surface site, as does f,. The standard 
bulk field term becomes 2ht1/'l/a, while the leading 
curvature-induced term for I <<To is rfl2t3/'l/ro, since 
the tension of a free planar interface is d2t3l2. Equat- 
ing these two terms and using the definitions (3.5) and 
(3.6) of the scaled variables leads to the identification of 
r /Ro as the effective H. 
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D. Curvature-induced prewetting and prewetting criticality When these equations are combined to eliminate T, the 

Now we would like to see that the topology of the 
phase diagram in the space ( H i ,  G, 1 /Ro ) is the same as 
that of phase diagram in the space (HI ,G ,H  > O)> For 
sufficiently small l /Ro  we have seen that the two phase 
diagrams are identical. Farther away from l /Ro =0, the 
problem of calculating the equilibrium wetting-layer 
thicknesses and the loci of phase equilibria is more 
difficult. 

Outside the unphysical wedge G >v/2%Ylo/Roo, and 
for 1 /R > 0, the free energy Fwe& diverges to + 00 

as Rc Ã‘ 00 . Therefore any surface phase transitions in 
curved geometries are prewetting transitions between 
phases of different finite wetting-layer thicknesses. Nu- 
merical minimization of (4.10) and comparison with the 
minimized Fdry(B-) confirms for r= 1 and 2, and there 
is no reason to doubt for general T, that there is a 
curvature-induced prewetting surface, satisfying 
Fyet=Fb, extending from the wetting curve on the 
l/Ro=O plane. The prewetting critical locus which ter- 
inmates the surface is found by evaluating the wetting- 
layer thickness L,., for the wet profiles on this surface 
and extrapolating it to zero, say as a function of Hi and 
Ro  at fixed G. A sketch of the resulting phase diagram 
is unnecessary since it is essentially the same as Fig. 2 if 
the label on the positive H axis there is changed to 
l/Ro. Of course, the phase diagrams have different un- 
physical regions and consequently their prewetting sur- 
faces behave differently at "large" G (say, G > 1 ) where 
the unphysical divergences in Fwet and FW begin to 
determine the behavior; however, these distinctions are 
not of physical interest. 

It is conceivable that in curved geometries there could 
be additional first-order transitions between pairs of wet 
profiles, so that the proposed phase diagram would be 
incomplete. We have not ruled out this possibility en- 
tirely, but it does not seem at all plausible. Numerical 
evaluation of (4.10) for r = l , 2  at a variety of points in 
the space (HI, G, 1 /R suggests that Fwe& Rc ) has at 
most one minimum for R,. > Ro, and thus equilibria be- 
tween distinct wet solutions is not possible. 

The numerical calculations of the prewetting critical 
locus for r= 1,2 reveal a surprising feature: their projec- 
tions onto the ( H l , G  plane seem to be identical. We 
know of no reason to expect this; however, a proof that 
these projections are indeed independent of r is straight- 
forward. As in the planar case, two independent condi- 
tions which together specify prewetting criticality are 
F'yet{L =0)=0,  which implies 

resulting projection of the critical prewetting locus onto 
the (HI, G ) plane, namely, 

H~ = ~ / 2 + [ ( ~ / 2 ) ~ + 4 ] ~ ' ~  with G > -^/2 , (4.15) 

lacks any T dependence. 

V. FINITE-SIZE EFFECTS 

We have seen that on curved substrates the only sur- 
face phase transitions are prewetting and critical prewet- 
ting transitions, since surface tension prevents wetting- 
layer thicknesses from diverging. In this section we 
point out that in d = 3  and for T= l,2-that is, for 
cylinders and spheres-even these transitions do not 
strictly exist because of finite-size effects. 

As Nakanishi and  ish her'^ emphasize, prewetting cri- 
ticality contains as a special case supercritical surface 
enhancement (in a ferromagnet, this corresponds to the 
surface having a higher Curie temperature than the 
bulk) and hence the universality class for both is the 
(d  - 1)- (here, two-) dimensional Ising class. Within the 
context of interface models the universality-class assign- 
ment is clear. The order parameter / is a scalar, and a 
prewetting transition corresponds to a double-well struc- 
ture in the interface potential V ( l ) .  As prewetting criti- 
cality is approached along the prewetting surface, the 
wells move closer together and the barrier between them 
shrinks. 

For curved geometries in d =3, a prewetting transi- 
tion would be tantamount to an Ising transition in a 
finite system (a sphere) or in an infinite strip (cylinder). 
Neither of these transitions can occur for T > 0; thus the 
prewetting surface and its associated critical points can- 
not exist as sharp transitions. What one should see in- 
stead are rounded transitions. For any d > 3, the same 
mechanism rounds the prewetting transitions when 
r = d - 1  ord-2 .  

The theory of finite-size scaling at first-order transi- 
tions, which provides a scheme for calculating the 
widths of these rounded phase transitions when ro is 
sufficiently large, is succinctly reviewed by Privman and 
  is her.^^ One needs at least three basic ingredients: the 
temperature, T, the substrate radius, ro, and the free- 
energy difference per unit area between the thick and 
thin layers (i.e., the surface phases that coexist at 
prewetting), A&, as a function of whatever thermo- 
dynamic fields are being adjusted so as to cause prewet- 
ting. The surface free-energy difference here is analo- 
gous to the bulk free-energy difference Afl mentioned in 

-HI + V^~T = 0  where T =RlO/Roo , (413) Sec. 11, since in both cases one of the phases will be 
metastable. However, reasonably direct control can be 

and F'y  ̂L = 0 )  = 0, which implies exerted on Afl, at least when it is small. For a magnetic 
system, Afl is initially linear in the applied field. For a 
binary-fluid mixture at fixed composition and close to 

T bulk two-phase equilibrium, AH is proportional to 

T-T*, where T* is the temperature at which coex- 
istence is attained. In both cases, the constants of pro- 

I portionality can at least in principle be determined by 
=0  . (4.14) bulk thermodynamic measurements. In contrast, AH, is 

not directly accessible; even crude estimates are impossi- 
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ble without some knowledge of the interface potential 
V(l). 

Rounding of first-order transitions on the surface of a 
sphere has not been studied explicitly, but one expects 
that the surface of a sphere in d dimensions of radius ro 
has roughly the same finite-size behavior as an r t l  
block subject to periodic boundary conditions. With this 
assumption, the rounded prewetting region for ~ = d  - 1 
is determined by 

The cylindrical r i 2  X oo geometry has been studied ex- 
plicitly.36 To calculate the width of the transition in this 
case, the domain-wall free energy, say 2,, between re- 
gions with different wetting-layer thicknesses, and the 
bulk correlation length 6, which serves as the elementary 
length scale for interface models, are required in addi- 
tion to T, ro, and A&. The rounded prewetting region 
is then36 

For the important case of wetting on spheres in d =3 
driven by long-range forces, close to the wetting transi- 
tion (and therefore near bulk coexistence specified by 
Afl = 0 ) the mean-field behavior of the interface models 
allows one to estimate AfL and thence the width of the 
rounded prewetting transition. Suppose that one has un- 
der control Afl and another parameter such as the tem- 
perature T. For 5 Ã l Ã ro the interface potential takes 
the form 

The Hamaker constant W may be estimated from experi- 
ments in planar and in general it depends 
only weakly on T in the vicinity of the wetting transi- 
t i ~ n . ~ '  Suppose Aflpre is the value of Afl as a function 
of T along the mean-field prewetting line, on which V 
has two equal local minima and Afl, =O. One of these 
minima corresponds to a thin wetting layer of width Id, 
while the other corresponds to a thick one ofwidth Iw, 
where (5.3) is valid with W > 0. The change in V(l ) as 
Afl moves away from Anpre is much greater for large 1 
than for small I, so to leading order in the bulk thermo- 
dynamic distance from prewetting, AOÃ‘Aflpre the sur- 
face free-energy difference is 

Then the rounded width of the prewetting transition 
along the Ail direction is given by 

As expected, this shrinks to zero as the radius ro in- 
creases. This expression becomes simpler when the sur- 
face stretching term 2cr/r0 may be ignored, such as in 
finite planar geometries, or when Aflpre ~ 2 o - / r o .  In ad- 
dition, under such conditions the prewetting line has a 

power-law behavior:34 

Aflpre- l 7'-TW I ( q + ~ / g  
where Tw refers to the temperature at the wetting tran- 
sition. Thus for any value of q, the fractional rounding 
tjfs( A f l ) / A f l  becomes proportional to 1 T - Tw 1 ' .  

It seems unlikely that finite-size rounding could ever 
interfere with experimental attempts to demonstrate the 
existence of a prewetting transition. For illustrative pur- 
poses, we again consider only spherical geometry and in- 
terface potentials described by (5.3) at large distances. 
The width of the transition 8fs(Afl) due to finite-size 
rounding must be compared with the best experimental 
resolution 8.,,( Afl available. Both of these quantities 
will depend strongly on the details of the system being 
studied; here we imagine a representative binary-fluid 
mixture not too close to its consolute point. It is charac- 
terized by kT& l o i 4  erg (around room tempera- 
ture), q =2 and w^\016 erg (drawn loosely from Ref. 
381, and o-= 1 erg/cm2. It is difficult to offer even an 
order-of-magnitude estimate for A f l ;  for the moment 
it is neglected. The rounding is then bounded below 
by roughly 5 x  1 0 - ~ ( r ~ / l  erg/cm3. 

In binary-fluid mixtures, Aft has been successfully 
manipulated by two different methods. In the first,38 the 
mixture is actually at bulk coexistence, but the substrate 
is at some vertical distance z from the bulk meniscus. 
Then Afl=gApz, where g is the gravitational accelera- 
tion and Ap is the mass density difference between the 
two bulk phases (which we set to 0.1 gm/cm3 for our 
present purposes). One could imagine studying wetting 
layers on a suspension of spheres in a mixture at coex- 
istence by turbidity measurements5 with a vertical reso- 
lution of about 1 mm, though "practical" matters such 
as aggregation5 and long equilibriation tirnes4Oy4l could 
make such an experiment impossible to carry out. Hy- 
pothetically, at least, tjeFIO ergs/cm3 could be 
achieved. It is important to recognize that the range of 
Ail that can be reached is quite small, from 0 to about 
100 ergs/cm3 in a sample cell of reasonable size. 

In the second method,37 the mixture is brought to- 
ward coexistence by moving T towards T*. It is not a 
trivial matter to estimate Afl AT-T* 1; in the experi- 
ment described in Ref. 37 that ratio is perhaps41142 lo6 
ergs/cm3K. If the temperature resolution is about 1 
mK, a rough estimate for the resolution in Ad is 
tiex P lo3 ergs/cm3. 

Using the present estimates for tjfS and tjex, it appears 
that the prewetting transition on ro= 1000 A spheres 
would not be noticeably rounded by finite-size effects if 
T-T* were used to control A i l  If gravity were used, 
finite-size rounding would completely smear the transi- 
tion. However, finite-size effects would not be the only, 
or even the most important, cause of rounding in either 
case. More significant would be polydispersity in the 
distribution of sphere radii: a 5% width in the distribu- 
tion would alone lead to a lo4-(erg/cm3) spread in the 
effective bulk field (again, using the present estimates for 
o- and ro). Only for the case of monodisperse and very 
small spherical substrates could finite-size rounding 
affect experimental measurements. 
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VI. SUMMARY AND REMARKS 

A simple interface model suggests, and study of an ap- 
proximate Landau theory confirms, that the effects of 
substrate curvature on surface phase behavior are essen- 
tially equivalent to those due to a bulk field. In particu- 
lar, for substrate radii ro < UJ all wetting transitions are 
suppressed. When fluctuations are considered, one sees 
that for d <r+2,  that is, when the substrate is infinite in 
at most one direction, finite-size effects smear the 
prewetting transition. In  this case, the rich surface 
phase diagram that one finds in planar geometry (see 
Fig. 1, for example) is left effectively featureless. All 
that remains is a bulk-driven first-order transition at 
bulk coexistence, where the boundary condition at 
infinity on the order-parameter profile undergoes a 
discontinuity. These conclusions are almost certainly 
true in any model of surface phase transitions for Ising- 
like systems with rough interfaces. 

Only single, isolated substrates have been considered 
here. In practice, such as in the experiment of Beysens 
and ~ s t 6 v e ~  on silica microspheres in a binary-fluid mix- 
ture, there may be many spherical substrates present. 
The situation is then considerably more complicated. 
The substrates interact, among other ways, via their 
order-parameter profiles.43 Furthermore, capillary con- 
densation may take place when two substrate surfaces 
are sufficiently close to one another, even though an iso- 

lated substrate would be on the "dry" side of the prewet- 
ting line.4446 The aggregation phenomenon seen in 
Ref. 5 was interpreted as a consequence of a prewetting 
transition; however, it seems equally plausible that it is 
related instead to capillary condensation. The aggrega- 
tion line would then be a displaced image of the bulk 
coexistence curve, rather than a prewetting line. 
Further-though not especially convincing-evidence 
favoring this reinterpretation is that in other binary- 
fluid-substrate systems it is suspected that the prewet- 
ting lines are rather short and lie very close to bulk 
coexistence, since they have managed to completely es- 
cape detection in experiments using planar sub- 
s t r a t e ~ . ~ ' ? ~ ~  
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