
VOLUME 59, NUMBER 15 PHYSICAL REVIEW LETTERS 12 OCTOBER 1987 

Interface Roughening in Two-Dimensional Quasicrystals 
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The equilibrium fluctuations of interfaces in two-dimensional quasiperiodic lattices, such as Penrose 
tilings, are considered. By a transfer-matrix formulation, this problem is mapped to the one-dimensional 
Schrodinger equation with a quasiperiodic potential; from the scaling properties of the eigenstates near 
the band edge, one can extract the exponent t, characterizing the interface roughness. For a cosine po- 
tential, we find a true roughening transition in d =2 dimensions. For a Fibonacci tiling, which approxi- 
mates the Penrose tiling, we find that t, is nonuniversal, t, < k, and fÃ‘< 0 continuously as T-+ 0. 

PACS numbers: 68.35.Bs, 61.50.Jr, 64.60.Cn, 71.55.J~ 

This Letter explores the thermal roughening of quasi- 
crystal interfaces and surfaces. This is motivated by ob- 
servations of dodecahedra1 grains of icosahedral Al-Mn, 
Al-Mn-Si, and U-Pd-Si alloys,' and smooth-faceted 
triacontahedral "crystals" of the equilibrium icosahedral 
phase of A~-cu-L~.* We will consider ideal quasicrys- 
tals3: Like ideal crystals, they contain high-density 
planes of infinite extent-i.e., they possess translational 
long-range order-but these planes are arranged quasi- 
periodically rather than periodically. 

In simple lattice-gas models defined on Penrose til- 
ings,4 it is easy to verify that (as with crystals) there are 
well-defined facets at temperature T=0.  The aim of 
this paper is to investigate the effects of T > 0 on an in- 
terface in thermal equilibrium, for the case d=2 .  
Surprisingly, we find that an interface in a quasiperiodic 
lattice is less rough than in the periodic case. In contrast 
to the periodic case,5 it may even exhibit a roughening 
transition at a finite roughening temperature TR > 0. 

In the first part of this paper, we will consider a solid- 
on-solid (SOS) model on a rectangular lattice, where the 
interaction strength is modulated quasiperiodically in the 
direction normal to the interface. For one case, where 
the modulation is described by a one-dimensional Fi- 
bonacci tiling, the interface is rough at any nonzero tem- 
perature, but the roughness exponent t, is smaller than in 
a uniform system and goes continuously to zero as 
T-+ 0; for a second case, where the modulation is de- 
scribed by an analytic function, there is a genuine 
roughening transition (TR > 0). In the second part of , 

the paper, we consider a model defined on a Penrose til- 
ing, which has quasiperiodic modulations in five direc- 
tions, and show how this problem can be mapped (ap- 
proximately) to one of the class solved in the first part. 

We will take fixed quasiperiodic lattices, and consider 
simple lattice-gas models which are equivalent to purely 
ferromagnetic Isnng spin models with no external field. 
We parametrize the interface (running in the x direc- 
tion) by z(x) ,  with a pinned boundary condition at one 
end, z(0) =zo. Then we can define a roughness (also 
known as wall wandering or spatial anisotropy) ex- 
ponent by5-7 

((z(x) -z0)"'!P2=xi^. (1) 

An interface is localized (corresponding to a facet) when 
the left-hand size of (1) is bounded as xÃ‘ - (which im- 
plies t,=0); otherwise it is called rough. In ordinary sys- 
tems in d =2 dimensions we always have !,= T .  

Let us now consider a toy model consisting of a rec- 
tangular lattice with all ferromagnetic bonds. The bonds 
in the x direction are all taken equal to a constant J/2; 
however, those in the z direction have the value V(z)/2, 
where V(z) is a quasiperiodic function of z. The energy 
of an interface is given by 

H=^{V(ZI:X))+J\Z(X+~)-Z(X) \\. (2) 

Let W(x;z) be the total Boltzmann weight of all inter- 
faces ending at (x,z). We use a transfer-operator ap- 
proach" to calculate W(x;z), building out the lattice in 
the x direction. The state space for each x is labeled by 
just z (x 1. We have 
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where 

and 

Note that, for large x, the same x dependence follows 
from the continuum form dW/dt Â¡=JCWntW(z) where 
LWnt= ln ( l+L)  has the same form as (4) but with 
? ( z ) = ~ ( z ) / T ,  and t ( z , z + l ) = f ( [ V ( z ) - ~ ( z + l ) l /  
2T) for f (y ) =(sinhy)/y. We will consider, in general, 
any quasiperiodic F(z and t (z,z + I ) ,  not just the cases 
arising from (2). In particular, the Penrose tiling model 
(see below) has temperature-independent V(z) and 
t ( z , z+ l )  as T+0 .  

The operator -L is that of the Schrodinger equation 
defined on a discrete chain, with f ( z )  the potential and 
t (z,z + 1) the hopping. The equilibrium state of the in- 
terface is specified by the eigenvector of L with max- 
imum eigenvalue, which corresponds to the ground-state 
eigenfunction of the Schrodinger equation. When the 
ground state (and the states near it) are localized, we 
have a localized interface. When the ground state is ex- 
tended, we have a rough interface. From the scaling of 
the eigenfunctions near the ground state, one can under- 
stand the correlations of the interface, in particular its 
roughness exponent C,. 

What follows is the argument for how the exponent C, 
can be extracted from the (known) exponents for the 
scaling of the energies of eigenstates near the ground 
state. We can decompose W(x;z) into eigenstates 
v/E (Z 1: 

where u(.E) is the integrated density of states and E o  is 
the ground-state energy. (For simplicity, we consider 
the continuous formulation of the x evolution.) With the 
pinned boundary condition, W(0;z) =8(z -zo), it is ob- 
vious that the initial "wave packet" contains a broad en- 
ergy spectrum. After x steps, most of the amplitudes 
will have decayed to zero apart from those with 
E -Eo < l/x. Now, an eigenfunction with energy E 
close to Eo looks indistinguishable from the ground state 
up to a coherence length S,c which (see below) scales as 

for some exponent a. The surviving eigenstates in 
W(x;z), then, are coherent up to l z  1 ^fc, beyond 
which they interfere destructively. Hence (z 2, 172^&, 

and 

For the case t(z,z + 1)  =const, equations of form (4) 
have been intensively studied for two special cases of 

?(z), both described by V ( . z ) = v ( r l z ) ,  where r is the 
golden ratio, r =  (1 +^/5y/2, and u (y ) is periodic, c (y 
+ 1) Case 1 is the piecewise constant "Fibonac- 
ci" potential: 

In this case, p (z )  is always either 0 or U, so that at 
T =0 there are many degenerate locations for a ground- 
state interface, as in the uniform case. Equation (8) pro- 
duces a Fibonacci sequence of values, OOUOUOO- . . . 
Our Eq. (4) is a generalization of this case to two values 
of the hopping coefficient, t (z,z + 1 ) TOO or tou. Case 2 
is Harper's potential, 

An essential method for previous studies of the one- 
dimensional quasiperiodic chain is the 2 x 2  transfer ma- 
trices AE(z) which, for a given energy E, propagate the 
corresponding eigenfunction yE (z ) down the chain 
( ~ E ( z + \ ) ,  ~ / E ( Z ) ) = A E ( Z ) ( ~ / ~ ( Z ) ,  YE(Z-I)) .  For 
the Fibonacci case (8), the matrix AE(z) just takes on 
one of two values Ai,Ao depending on whether V(z) =U 
or 0. One can construct a renormalization group for the 
matrices by taking advantage of the self-similarity of the 
Fibonacci lattice under a kind of decimation called 
"deflation." One blocks together the pair UO+ U and 
U-+ 0, which reduces the number of sites by a rescale 
factor r. This induces an iteration of the transfer ma- 
trices which propagate the wave function on the decimat- 
ed lattice8: An+1 =AnAn-1. The nature of an eigenstate 
is just determined by its A1 and Ao. 

It remains to derive (6) for the Fibonacci case (8). 
Under the renormalization group, we produce a sequence 
of eigenstates with coherence lengths and growing 
differences AA,, =An -A;'), where the A^ are the 
iterates of the ground-state transfer matrices. An eigen- 
state is coherent with the ground state up to cc if its next 
iterate is coherent up to &IT: Hence, $c,n==rnS,c,o- 
Also, AA,==LjnAAo, where 8 is the more relevant eigen- 
value of the matrix i t e r a t i ~ n . ~ ' ~  Finally, AAo- (E 
- Eo), from the definition819 of (Al,Ao). Now, S,c,n == 1 
at the same step where AAn== 1; solving for E,c,o in terms 
of E -En, we see that (6) holds with a=lnr/ln8. 

It turns out that 8 is just the eigenvalue corresponding 
to the simple one-dimensional map obeyed by the traces 
of the transfer For the ground state (corre- 
sponding to the two-cycle of the trace map), Kohmoto, 
Sutherland, and   an^^ found 

where I is the invariant of the trace map, given by 
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Recalling Eq. (71, we have finally 

i,=ln~/ln6, (1 1) 

where 6 is given by Eqs. (10). As a check, note that for 
the uniform case, V(z)=0, too=tou, then Z=0, and so 
<5= r2, which indeed gives the usual i,= y .  

The roughness exponent i, is nonzero, and so the inter- 
face has unbounded fluctuations, but these are anoma- 
lously weak: i, < i, and the exponent i, depends con- 
tinuously on the temperaturethrough Z. When U, too, 
and to" are temperature independent, then as T-+ 0, Eo 
--+ const and (lob) implies /^e 2JfT; as I+ 00, 6-z1f4, 
so that 

@ 21ndTIJ).  (12) 

The behavior (12) follows whether or not too=tou. 
Numerical iteration of (4) using the Fibonacci poten- 

tial (8) with (7- 1 -exp(-0.41, fitted to (1) over the 
range lo3 < x < lo5, gave i,=0.35 k 0.01 and 0.27 
2 0.02 for T/J-0.4 and 0.3, respectively, in full agree- 
ment with the values 0.347 and 0.280 predicted from 
(lob). 

Next we consider the other case, that of Harper's po- 
tential (9). Take the case of constant t (z,z + l ) ~ t :  If 
ueJlT/t < 2 (UeJIT/t > 21, then almost all  states,'' in 
particular those near the ground state,'' are extended 
(localized). This implies a roughening temperature TR 
such that the interface is localized for T < TR and 
rough, with C= $, for T > TR. In the actual model de- 
rived from (2) and (9),  t (z ,z+ 1)  has an (analytic) 
quasiperiodic modulation. We still expect a second- 
order roughening transition in this case, although the 
value of TR (and possibly of i,) will be changed. 

Exactly at  T=TR,  we expect critical scaling near the 
ground state with a nontrivial & Indeed, using (7) we 
extract t,si 0.42 1 from Ref. 1 1. Furthermore, fluctua- 
tions of the interface will diverge at TR characterized by 
correlation lengths & - \ T - TR 1 " ' I  and eJ. - \ T 
- TR \ v - L  in the x and z directions, respectively, with 

vL-1, v l l=1 /p2 .38 .  (13) 
Here VJ. = 1 is well known for the localization length of 
the one-dimensional Schrodinger equation lo and VJ. = cvll 
follows from scaling.6 The interfacial free energy 
satisfies hyperscaling: It scales as 1 / ~ 1 1  and so the ex- 
ponent as of the interface specific heat at  TR is given by 
as -2 - I / < <  0. 

We now study the interface roughening in the "cell" 
model, defined on the version of the Penrose tiling with 
two kinds of rhombi. l2  The center of each rhombic cell 
has one spin, with four ferromagnetic bonds (strength 
7/21 to the spins in the neighboring rhombi. An inter- 
face between ferromagnetic ground states is just a path 
along the edges of the tiling, and its cost is J times its 
length. 

The T-0 interface paths can be found4>l3 with the 

grid, or dual, construction of the Penrose tiling12: The 
optimal interface runs normal to an edge direction 
(which we will call the z direction). It consists of any 
path of steps which have a positive projection on the x 
direction. (See Fig. 1.) For a fixed starting point, ZQ, 
the path is not unique, but is confined within a "lane," 
bounded by rows of tiles with k z  edges. (These rows 
are called "tracks" in Ref. 4. Consequently, the inter- 
face is smooth at T =O. 

There are two general classes of lanes (Fig. I): nar- 
row ones, which have a width zero in places, and wide 
ones, which have a minimum of two sites in parallel. 
The wide and narrow lanes are stacked vertically so as to 
form a Fibonacci sequence, which we will number by 
z= l , 2 , 3 , .  . .. 

We now let f i (x ;z )  be the the number of paths (up 
to x) in lane z: obviously it is larger for the wide lanes. 
With use of the projection construction of the tiling,12 it 
can be shown tha~t the same sequence of environments re- 
peats quasiperiodically along each lane. Thus each lane 
has a well-defined entropy, Wo(x;z ) ~ ~ X P [ S \ ~ ~ ~ ( Z  1x1, 
which is quasiperiodic in Z: Slane(z) = s ~ ~ ~ ~ ( T  ' z ) ,  
where ~lane(y)=;~~ane(~ + 1 ). 

We next approach the interface fluctuations in the 
same spirit as with the lattice model. At T > 0, the in- 
terface may jump from one lane to the next (along a z 
edge) with a Boltzmann cost e J f T .  At low tempera- 
tures we may take a continuum approximation in the x 
direction, exactly as with the lattice model. In place of 
V(z)/T, the potential term in the Schrodinger operator 
in (4) is now f ( z )  = - SIane(z 1. The form of slane(y) is 
similar to Eq. (8). We find that slane(y) ranges, depend- 
ing on y, from 0.451 58 to 0.45444 for narrow lanes (an 
analytic result) and for wide lanes from 0.540363 3 to 
0.540 364 7 (numerical result). The hopping rate be- 
tween lanes is also quasiperiodic as a function of z, and is 
similar in form to the model with two hopping coef- 
ficients, too^0.47 and tou=0.44. Here t (z,z + 1)  < 1 

-.-.. 
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FIG. 1. Part of two-dimensional Penrose tiling showing 
three "lanes" (two wide and one narrow). Any path which al- 
ways moves to the right and does not cross the shaded strips is 
a ground-state interface; the union of these paths is shown bold 
in the first lane. The vertical dashed lines in the first lane show 
how it breaks up into two kinds of units, repeated quasiperiodi- 
cally. 
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reflects the reduction in entropy due to the constraint 
that a hop must start from the edge of a lane. 

Thus, the interface should look rough with an ex- 
ponent behaving like (12) as T+0. However, there is 
evidence that slane(y) land the analogous envelope func- 
tion for t (z,z + 1 )I is not exactly piecewise constant. We 
speculate that this may lead to a crossover to a roughen- 
ing transition at very low T [the exponents would differ 
from (13) since she(y) is nonanalytic.] 

In other, more generic 2D models (e.g., with Jij  de- 
pending on local environment,'^ or with farther-neighbor 
interactions), we would expect the effective potential to 
have a continuum of values (and include energy terms, 
not just entropy terms). In this case, V(z) might better 
be approximated by Harper's equation (91, which im- 
plies a roughening transition. 

We have not analyzed the case of d =3 here; clearly, a 
quasiperiodic V(z in the interface normal direction will 
increase the tendency of the interface to be localized. In 
fact, an argument based on the functional renormaliza- 
tion group15 suggests that the interface is always local- 
ized in d = 3 dimensions. 

We have also ignored the role of disorder, which seems 
to be universal in the real alloys.2b'16 An important kind 
of disorder is "phason strain"I7 which involves rearrang- 
ing tiles without introducing  dislocation^.^^ A lattice-gas 
model on a fixed lattice with quenched "phason" disor- 
der should exhibit a roughening due to effective random 
exchange as in Ref. 7. 

We wish to thank E. D. Siggia, D. A. Huse, and 
S. Ostlund for valuable discussions. The question of the 
roughening of quasicrystal interfaces was originally 
posed to us by W. Saam. One of us (C.L.H.) was sup- 
ported by National Science Foundation Grant No. 
DMR-84-5 1921, and by an IBM postdoctoral fellowship. 

^current address: Department of Physics, Boston Univer- 
sity, Boston, MA 022 15. 

'J. L. Robertson, M. E. Misenheimer, S. C. Moss, and L. A. 
Bendersky, Acta Metall. 34, 2177 (1986); R. J. Schaefer, L. A. 
Bendersky, F. S. Biancaniello, and W. J. Boettinger, Metall. 
Trans. 17A, 21 17 (1986); Y. Shen, S. J. Poon, and G. J. 
Shiflet, Phys. Rev. B 34, 3516 (1986). 

^B. Dubost, J. M. Lang, M. Tanaka, P. Sainfort, and 
M. Audier, Nature 324, 48 (1986); F. W. Gayle, J. Mater. 
Res. (to be published). 

2bP. A. Bancel, P. A. Heiney, P. M. Horn, and F. W. Gayle, 
(to be published). 

^proceedings of the Les Houches workshop on aperiodic 
crystals, J. Phys. (Paris) Colloq. 47, C3 (1986). 

^For a review, see C. L. Henley, Comments Condens. 
Matter Phys. (to be published), and references therein. 

^After submitting our Letter we received the manuscript of 
A. Garg and D. Levine, following Letter IPhys. Rev. Lett. 59, 
1683 (198711, which presents very similar results. 

a review, see M. E. Fisher, J. Chem. Soc. Faraday 
Trans. 2 82, 1569 (1986). 

6R. Lipowsky and M. E. Fisher, Phys. Rev. Lett. 56, 472 
(19861, and Phys. Rev. B 36, 2126 (1987). 
7D. A. Huse and C. L. Henley, Phys. Rev. Lett. 54, 2708 

(1985); M. Kardar, Phys. Rev. Lett. 55, 2235 (1985). 
8 ~ .  Kohmoto, L. P. Kadanoff, and C. Tang, Phys. Rev. Lett. 

50, 1870 (1983); S. Ostlund, R. Pandit, D. Rand, H. J.  
Schellnhuber, and E. D. Siggia, Phys. Rev. Lett. 50, 1873 
(1983). 

9M. Kohmoto, B. Sutherland, and C. Tang, Phys. Rev. B 35, 
1020 (1987). Our Eq. (10a) is â‚¬d of their Eq. (5.51, and our 
(lob) generalizes their (2.16). 

1Â°S Aubry and G. Andre, in Group Theoretical Methods in 
Physics, edited by L. Horwitz and Y. Ne'eman, Annals of the 
Israel Physical Society, Vol. 3 (Israel Physical Society, 
Jerusalem, 1980), p. 133. 

"C. Tang and M. Kohmoto, Phys. Rev. B 34, 2041 (1986). 
I2N. G. de Bruijn, Proc. K. Ned. Akad. Wet. Ser. A 84, 39,53 

(1981). 
1 3 ~ .  Frenkel, private communication. 
^H. Aoyama and T. Odagaki, to be published. 
15D. A. Huse, private communication. 
16V. Elser, Phys. Rev. Lett. 54, 1730 (1985). 
17J. E. S. Socolar, T. C. Lubensky, and P. J. Steinhardt, 

Phys. Rev. B 34, 3345 (1986). 


