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Abstract. The intermediate fluctuation regime for wetting transitions is studied for 
(1  + 1)-dimensional systems. This regime is found to consist of three different subregimes 
resulting from the competition between the short-range part and the long-range part of the 
direct interaction between the interfaces. In subregime A, the short-range part is irrelevant, 
which leads to a wetting transition of infinite order. In subregime B, both parts are relevant 
and the critical behaviour is non-universal. In these two subregimes, all critical singularities 
can be expressed in terms of a single length scale. This scaling breaks down in subregime 
C for which the interfacial fluctuations are strongly non-Gaussian. 

The critical behaviour at wetting can be understood in terms of the effective interactions 
between the two interfaces bounding the wetting layer (for a review, see Fisher 1986). 
Two types of interactions can be distinguished: ( i )  direct interactions, V ,  between two 
planar interfaces which arise from the microscopic forces between the molecules or 
atoms and (ii)  fluctuation-induced interactions, VFL, arising from the roughness of the 
interfaces. The competition between these two types of interactions leads to various 
scaling regimes (Lipowsky and Fisher 1987 and references therein). Apart from a 
mean-field regime, two regimes have been studied in which the critical behaviour is 
governed by the interfacial fluctuations: ( i )  a weak fluctuation (WFL) and ( i i )  a strong 
fluctuation (SFL) regime. In this letter, we investigate a third fluctuation regime which 
lies at the borderline between the WFL and SFL regimes. Within this intermediate 
fluctuation ( I F L )  regime, we determine three different subregimes for space dimensional- 
ity d = 2 = 1 + 1: (i) subregime A consisting of wetting transitions of infinite order; (ii) 
subregime B for which the wetting transition is of second order but characterised by 
non-universal critical behaviour with parameter-dependent critical exponents and ( i i i )  
subregime C which has rather unusual critical properties: on the one hand, the 
interfacial fluctuations are strongly non-Gaussian and lead to an infinite number of 
distinct critical exponents, and, on the other hand, the interfacial energy is discon- 
tinuous which usually implies a first-order transition. 

First, consider two planar interfaces with constant separation 1. Their direct interac- 
tion, V ( l ) ,  typically contains both an attractive and a repulsive part. Furthermore, 
these parts may consist of short-range and long-range contributions. Now, the fluctu- 
ations or undulations of these interfaces can be characterised by their roughness, tl. 
This gives rise to the fluctuation-induced repulsion, VFL(tl), with VFL(s1) - 116: for 
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d = 2  (Prokovsky and Talapov 1980). Then the mean-field and the WFL regimes in 
d = 2 are defined by (Lipowsky and Fisher 1986a) 

1/5:<<Iv(ol for large 1 - tl. (1) 

In this case, the interfaces undergo a discontinuous or a continuous unbinding transition 
if the tails of V(I) are repulsive or attractive, respectively (Kroll et a1 1985, Zia et a1 
1987). In the latter case, the associated critical behaviour is, in fact, determined by 
the long-range attraction. In contrast, one has 

I V(l)l<< 1/t: for large 1 - tL (2)  

for the SFL regime in d = 2 (Lipowsky and Fisher 1986a). Then the unbinding transition 
is always continuous (Kroll et a1 1985, Zia er a1 1987) and the critical behaviour is 
governed by a non-trivial renormalisation group fixed point (Lipowsky and Fisher 
1986b, 1987) for which the long-range tails of V( I )  represent an irrelevant perturbation. 

In the I F L  regime, studied here, 

V F d t l )  - 1/5: - I V(0l  for large 1 - tl. (3) 

As shown below, both the long-range part and the short-range part of V ( I )  can now 
affect the critical behaviour. If the short-range part of V(1) is irrelevant, the wetting 
transition is of infinite order. On the other hand, if the short-range part is relevant 
the critical behaviour is found to be non-universal. 

To proceed, introduce Cartesian coordinates x and z and consider two interfaces 
which are, on average, parallel to the x axis. Their local separation is denoted by Z(x). 
As usual, only interfacial configurations without overhangs will be taken into account. 
Then, the effective Hamiltonian, X, has the generic form (Lipowsky and Fisher 1987 
and references therein) 

X { l } =  dx[$%(Vl)'+ V(l)] (4) i 
where % is the effective interfacial stiffness and V(1)  is the direct interaction between 
the interfaces. A high-momentum cutoff, A, is implicitly contained in (4). 

One may now use the usual rules of statistical mechanics in order to express 
thermodynamic quantities and expectation values in terms of Feynman path integrals. 
In d = 1 + 1 ,  as studied here, 1 depends only on one spatial coordinate and these path 
integrals can be evaluated via transfer matrix methods. For finite small-distance cutoff 
l / A ,  one has to determine the eigenvalues and eigenfunctions of the transfer matrix 
from an integral equation (e.g. Burkhardt 1981). In the limit l /A+O,  this integral 
equation reduces to the Schrodinger-type equation (e.g. Kroll and Lipowsky 1983) 

{ - t [ (kBn2/51a2 /a12+  V ( 0 ) 4 n ( U  = JW"(U. ( 5 )  

In the following, we will focus on a specific interaction within the I F L  regime defined 
by (3) .  This interaction is given by 

l < O  
V ( 1 ) =  -U 0<1<1, (6) r - W/12 1, < I. 

The special case U = - m  has been studied before (Kroll and Lipowsky 1983, Chui 
and Ma 1983). For W<O and U>O, some scaling relations between the critical 
exponents have been obtained previously (Zia er a1 1987). In this letter, we will 
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determine the global phase diagram in the ( W, U )  plane, show that the critical behaviour 
exhibits three different subregimes and determine the critical exponents within the 
various regimes. 

l /  l o ,  
U =2%1: U / ( k B T ) 2 ,  w e 2 2  W / ( k , T ) ’  and the rescaled energies E ,  ~ 2 2 1 :  E , / ( k , T ) ’ .  
Then the Schrodinger-type equation ( 5 )  becomes 

In order to simplify th? notation, let us introduce the rescaled variables z 

[-d2/dz2+ 4 z ) l 4 n ( z )  = &,4,(Z) (7) 

with 

z < o  
u(z) = [mu O < z < l  

- W / Z 2  1 < 2. 

Within the transfer matrix formalism, the unbinding of the interfaces is given by the 
unbinding of the ground state, c $ ~ ,  which undergoes a transition from a bound to a 
scattering state. The ground-state energy, E ~ ,  is obtained from the usual matching 
condition that +o(z) and a4,/az are continuous at z = 1. It is convenient to distinguish 
two cases: ( i )  -a< w ~ i  and (ii) f <  w <a. 

is found to vanish 
along the phase boundary U = U,( w )  which is given by 

First, consider the case w S t .  Then, the ground-state energy 

S(u,)=&cot (a)-;= - ( f -  w)? (9) 

This implies U,( w )  = 7r2 for w -f -a and u,(O) = +d. As w + f - ,  the critical value U,( w )  
approaches the limit U,(+) = U,, = 1.358. This locus of the phase boundary corresponds 
to a multicritical point (see (19) below). In the vicinty of the transition line given by 
(9),  the ground-state energy behaves as 

(exp( c /  A u )  for p = o  
for 0 < p < 1 
for p = 1 
f o r p > l  

with p = ( f -  w)’” as Au = U - u , ( w )  +Of  while E ~ =  0 for Au CO. The second case 
includes the situation without long-range forces for which w = 0 and p = i. 

Next, consider w > f .  In this case, we used the procedure described by van 
Haeringen (1978). As a result, the asymptotic behaviour is found to be 

for U # U,, 

for U = U,, 

with q = J E ~ J ~ / ~  as A = ( w  -$)1 /2+0 where ?=OS772 is Euler’s constant and n is an 
integer which is not determined by the matching conditions. Now, negative values of 
n are unphysical since they lead to a divergence of (&,,I = q2  as A + 0. Therefore, the 
ground state must correspond either to n = 0 or to n = 1. If it corresponds to n = 0, 
one has ( E ~ I +  constant as w +a+. This applies to U > U,, for which a bound state exists 
even for w < f .  If the ground-state energy is given by n = 1, one has (eO/  + 0 as w + f +  
which applies to U S  umc. In the latter case, one finds from (11) and (12) that 

(13) 1 ~ ~ 1  = exp[ - 2 7 r / ( A ~ ) ” ~  + 2 / S (  U )  + 2(ln 2 - r)] 
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for U < U,, and 

exp[ - T / ( A w ) ” *  + 2(ln 2 - r)] 
for U = U,, as A w =  w - - f + O + .  

Within the transfer matrix formalism, the interfacial -.ee energy is given by fi = Eo 
and the longitudinal correlation length by .$ = kB T /  ( El - Eo).  The mean separation 
of the two interfaces is 

where 4o is the ground state. Likewise, the interfacial roughness is t1 = ((I -( l))2)1’2. 
We will also discuss the length scales 5, = ( ( I  -(I))”’)’’”’ where m is taken to be positive 
and real. 

The critical behaviour of the correlation length, 511 - l / I E o l ,  can be obtained directly 
from ( lo ) ,  (13) and (14). Then one finds that the locus of the wetting transitions is 
composed of three different subregimes A, B, and C, as shown in figure 1. In subregime 
A with w = a and -a < U < U“,, the correlation length exhibits an essential singularity: 

(A) til - e x p [ 2 ~ / (  w -$)”’] (16) 

where the next-to-leading corrections are O(1) (see (13)). This behaviour has been 
obtained previously for the special case U = -a (Kroll and Lipowsky 1983, Chui and 
Ma 1983). In subregime B with -:< w <$ and U,, < U,( w )  < U,( -2) = ti = 3.737 as 
given by (9),  one has 

( B )  511 - (U - U,)-”’ with VII = (4- w ) - I / 2 ,  (17) 
Thus, the critical behaviour is non-universal in this case. Finally, in subregime C with 
-a < w < --$ and < U,( w )  < T * ,  one finds the simple behaviour 

Figure 1. Global phase diagram for the direct interaction given by (8).  The phase boundary 
between the bound and the unbound states of the interfaces consists of three distinct 
subregimes A, B and C. The locus of transitions within subregime A is given by the curve 
which extends from ( w ,  U) = (a, -a) to (a, U,,= 1.358); the curve for B extends from 
( i ,  u,J to (-$, ai = 3.737) and the curve for C from ( - f ,  a i )  to (-CO, v2) .  



Letter to the Editor L93 

The regimes A and B are separated by the multicritical point at ( w ,  U )  = (a ,  U,=). At 
this point, the correlation length, &, behaves as 

tIl - exp[Au-’f2(Aw/Au2)] (19) 

where the shape function, 0, goes as 

n(0) =constant 

and 

O(X) = */x”2 for X + W .  

Between the subregimes B and C, one has the special point ( w ,  U )  = (-2, ~7) .  At this point 

511 - Iln(Au)l/Au (22) 

as follows from (10) for p = 1. In all cases, the hyperscaling relation, f, - l / & ,  is 
valid. This implies that the interfacial energy, af,/aT, is continuous in the subregimes 
A and B including the point ( w ,  U )  = (-2, ti), but is discontinuous in subregime C. 

Next, consider the length scales < t1 and 5,. In the WFL and SFL regimes, these 
different length scales are not independent but satisfy the relation (Lipowsky and 
Fisher 1987 and references therein) 

i- 51 - t m  - tf; with l = ;  (23) 

in d = 2 .  The same relation is found to apply in the subregimes A and B of the IFL 

regime studied here. Thus, to leading order, there is only one independent length scale 
in these cases. However, this scaling is no longer valid in subregime C with w < -2. 
First, consider the mean separation, f ,  which is found to behave as 

i- A U +  with $ = t - ( L -  w ) l / 2  (24) 

tL - A U  -”- with = 1 - L ( L -  2 4  w ) l / 2  ( 2 5 )  

for -2 < w < -: and i- O( 1 )  for w < -2. Likewise, the roughness, tl, goes as 

for -y < w < -2 but tL - O( 1) for w < -?. In general, one has 

(26) 

for m > ( 1  -4w)”’ - 2 > 0. Thus, subregime C is characterised by strongly non- 
Gaussian fluctuations and by a complete breakdown of scaling with a single length 
scale. This also shows up in the fact that the ratios v,/ V I /  = v, differ from 5 = as has 
been shown previously (Zia et al 1987). 

The critical exponents determined above depend only on the value of w = 
22 W/(k ,T) ’ ,  i.e. on the rescaled amplitude of the long-range tail -- W/12 of the 
direct interaction. The same behaviour should apply to a large class of direct interac- 
tions, V ( I ) ,  in the effective Hamiltonian (4). Indeed, it should apply to all V(1)  which 
have a long-range tail - W/l’ and a short-range part which, by definition, falls off 
faster than 1/12  for large I and which can be changed independently from the long-range 
part. A similar behaviour is expected to hold for SOS models on a lattice for which 
the gradient term (VI)’ in (4) is replaced by l l ( x i ) - l ( x j ) l  and the direct interaction, 
V(1) ,  again has a long-range tail -l/12. Such SOS models have been previously studied 
for short-range V(1)  (e.g. Burkhardt 1981) and for V(1)  - 1 / 1  (Privman and Svrakic 
1987). 
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For wetting transitions in d = 3 = 2 + 1, all fluctuation regimes become degenerate. 
Then, one has a marginal scaling regime which consists of all direct interactions, V( I ) ,  
for which the tails decay faster than an inverse power of 1. For example, for V( I )  - 
exp( -Z), various subregimes with different scaling properties have been found from 
functional renormalisation group calculations and from Monte Carlo simulations 
(Lipowsky et al 1983, BrCzin et a1 1983, Fisher and Huse 1985, Lipowsky and Fisher 
1986b, 1987, Gompper and Kroll 1987). The associated critical behaviour is similar 
to the critical behaviour in the subregimes A and B of the intermediate fluctuation 
regime as determined in this letter. So far, a subregime such as subregime C, which 
is characterised by strongly non-Gaussian fluctuations and many independent length 
scales, has not been found in d = 2 + 1. 

Intermediate fluctuation regimes can also be studied in the context of other physical 
systems. Two particularly interesting cases are: (i) wetting transitions in systems with 
quenched impurities and (ii) unbinding transitions of amphiphilic membranes. In  both 
cases, different subregimes are expected which exhibit essential singularities or non- 
universal critical behaviour. 

We thank Wolfgang Helfrich, Daniel Kroll and Raymund Lederhofer for stimulating 
discussions and Heiner Muller-Krumbhaar for a critical reading of the manuscript. 
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