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Stretched-exponential relaxation of birefringence in a critical binary mixture 
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Transient electric birefringence in near-critical binary mixtures is found to exhibit stretched- 
exponential relaxation of the form exp[- ( t / ~ ) ' ] ,  with x constant and r diverging as a power law 
in reduced temperature. A simple scaling theory of this phenomenon is proposed, relating x and 
the relaxation-time exponent to static and dynamic critical exponents, with values in good agree- 
ment with experiment. The results yield information about the distribution of fluctuations in the 
one-phase region of critical fluids and mixtures. 

When the elementary relaxation processes in a system 
are characterized by a broad distribution of relaxation 
times, its time evolution following a perturbation may be 
highly nonexponential. In systems as diverse as amor- 
phous solids, materials with random "traps," polymers, 
and spin glasses, the time dependence of the relaxation 
function R( t )  of some dynamical variable may take on 
the so-called stretched-exponential f0rm~9~ 

where the exponent x 5 1, and T may be interpreted as a 
mean relaxation time. In contrast, when the distribution 
of relaxation rates is very narrow, one finds x = 1. In un- 
derstanding the nonexponential relaxation found in a 
given experiment, it is often postulated4 that R ( t  ) may be 
written as a sum, over the distribution of processes P(l),  
of the exponential behavior each would have in isolation, 
characterized by a time constant q; 

where S( l )  is a signal function describing the contribution 
of each process to the observed signal. The index 1 may 
represent, for instance, the heights of barriers hindering 
rotation of molecules within a host crystal. The stretched 
form (1) can be derived from a saddle-point analysis of 
(21, in the limit of long times, with the exponent x and 
time constant T related to the relaxation mechanisms and 
the form of the distribution. while a description such as 
(2) is a useful representation of the data, there are few 
systems in which there exist microscopic theories of both 
the distribution P( l )  and of the relaxation time T/ so that 
the origin of the particular exponent x in (1) is not clear. 

We report6 here experimental studies of the time 
dependence of electric birefringence7 near the consolute 
point of the binary mixture 2,6-lutidine and water which 
demonstrate stretched-exponential growth and decay of 
polarization consistent with Eq. (11, with ~ ~ 0 . 4  indepen- 
dent of temperature and T= d s )  diverging with reduced 
temperature s a \ T - Tc \ ITc as 

T(&) -s -~ ,  (3 

with y ̂  1 .a. A simple scaling theory is developed which 
relates the exponents x and y to static and dynamic criti- 
cal exponents 

where ~ ~ 0 . 0 4  describes the decay of correlations at Tc, 
z Z 3  is the dynamic exponent for a conserved order pa- 
rameter,* and ~ ~ 0 . 6 3  is that of correlation length Â£ 

The present work was motivated by the discovery of 
analogous stretched-exponential relaxation in micellar 
solutions of nonionic surfactants near their lower conso- 
lute poink9 In order to ascertain whether the anomalous 
relaxation was a property attributable to the specific mi- 
crostructure of the systems, with their polydisperse distri- 
bution of large micellar aggregates, or, rather, was intrin- 
sic to the critical-point region, we undertook the present 
experiments on the well-studied lutidine-water solutions. lo 

Similar results, particularly with regard to the stretched 
exponential form of the transients, have been found in the 
butoxiethanol-plus-water system. l1 

The experimental methods are essentially unchanged 
from previous work. The transient electric birefringence 
(TEB) experiment consists of applying a rectangular 
pulse of electric field to the liquid mixture and observing 
the transient as well as the steady-state induced bi- 
refringence. A detailed description of the TEB apparatus 
can be found in Ref. 10. Here, we simply recall that the 
setup used in this work includes a quarter-wave plate in- 
serted between the Kerr cell and the analyzer to increase 
the sensitivity and reduce parasitic effects due to stress 
birefringence of the cell windows. lo The cell itself was 
made from an optical glass cuvette which was selected for 
its low residual stress birefringence. The optical path- 
length is 60 mm, and the electrodes have a separation of 
2.5 mm. Temperature control within the thermostated 
cell was maintained to & 0.01 O C  (reduced temperature to 
& 3 x 10 - 5 ) .  Voltage pulses with heights of 0.3-1 kV and 
durations of 10-300 ps were used. The samples consisted 
of high-purity 2,6-lutidine and deionized and filtered wa- 
ter (Gelmann Instruments Water 1 system). The electri- 
cal resistivity of the samples was ca. 200-300 kftcm at 
2O0C. 
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The output of the photodetector, which is linearly relat- 
ed to the difference An between the index of refraction n11 

parallel to the applied electric field) and n J. 

(polarization perpendicular to the applied field) is sent to 
a transient digitizer (Data 6000, Data Precision) which 
performs the averaging over a prescribed number of runs 
(typically 50). The duty cycle was extremely low to avoid 
cumulative heating effects. 

The mixture 2,6-lutidine plus water has a lower conso- 
lute boundary with a critical point at 33.5OC and 29% by 
weight of lutidine. By fixing the lutidine concentration at 
the critical value, we have studied the temperature depen- 
dence of the electric birefringence transients in the range 
20-33.4OC. In the investigated range of conditions, we 
have verified that the shape of the birefringence transient 
does not depend on the applied electric field E, and that 
the steady-state value Ans is proportional to the square of 
the field. The Kerr constant B, defined as B = ~ n ~ / 3 1 ~ ~ ,  
with 31 the wavelength of probing li ht, is found to in- 
crease from a value of 53  1.3 X 10 "'^mV '2 far from Tc 
t o a v a l u e o f 2 . 5 ~ 1 0 " a t  Tc-Tn0.150C. Intherange 
2OC + Tc-T>:0.150C ( s = 7 x l 0 ' ~  to 5 x 1 0 ~ ~ 1 ,  B is 
described rather accurately by a power law of the form 
B^Bot'*, with B o ~ X l ~ " 1 5  m v m 2  and Y==0.88 
k 0.04. The experimental value for the critical exponent 
is strikingly different from the value v d l  - 2v) 4 . 5 8  
which is the common prediction of both a phenomenologi- 
cal droplet model l 2  and a more microscopic theory of the 
dielectric properties of a polarizable fluid.13 We have no 
explanation for this result. 

The birefringence was monitored during the application 
of a square-wave pulse of the electric field of a duration to 
which was typically many multiples of the mean relaxa- 
tion time 7. With B(t) the observed birefringence at time 
t, we define normalized rise and decay relaxation func- 
tions ~ r ( t ) - l B ( o o ) - ~ ( t ) } / ~ ( w )  and Rd(t)=B(to 
+ t ) / ~ ( t ~ ) .  The behavior of these functions is qualita- 
tively like that found in Ref. 10, to which the reader is re- 
ferred for typical data. 

For a relaxation function obeying (11, the exponent x 
may be determined as the slope of a log-log plot of 
-h[R (t 11 vs t, and 7 determined from the appropriate 
intercept. Figure 1 shows data from six of the deca ^ curves spanning the range 1 . 5 6 ~  l o 3  < s< l.17x 10' , 
plotted as a function of the scaled time t/r(e). In general, 
we find that linear behavior is obeyed over a larger and 
larger time range as s+ 0, with systems closest to the 
critical point obeying a stretched-exponential decay over 
almost two decades in the reduced variable tlr. Mindful 
of the somewhat limited range of time over which the data 
collapse, we estimate the slope of the best-fit straight line 

> 1 to be to the linear portions of the data for (17- 
x -0.39 k 0.07. The power-law divergence of the mean 
relaxation time r(e) is shown in Fig. 2, and a linear least- 
squares fit yields y=1.80 k0.20 for the decay curves, 
where the quoted uncertainty is one standard deviation. 
Similar exponents appear for the birefringence rise data. 
An anomalous behavior of the birefringence relaxation in 
the critical region has also been found in studies of mi- 
croemulsions. l4 

To describe the observed birefringence transients, we 

FIG. 1. Normalized decay functions R,i of electric 
birefringence in lutidine-water mixtures as functions of scaled 
time, demonstrating stretched-exponential relaxation. Dashed 
line corresponds to a stretch exponent x =OA. Maximum and 
minimum reduced temperatures studied are indicated. Note 
how the range of reduced temperature over which a stretched- 
exponential is seen increases as &-+ 0. 

draw an analogy with the description of the birefringence 
behavior of polydisperse fluids along the lines of Eq. (2) 
and propose that the spectrum of relaxation times in (2) 
arises from the distribution of sizes of order-parameter 
fluctuations in a critical fluid. These fluctuations are dis- 
torted by the application of an electric field, in much the 

FIG. 2. Power-law divergence of the decay time constants id 
with reduced temperature s. The slope of the fitted line is 
yd = 1.8 Â 0.2. 
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same way as occurs with aerosol droplets, and will relax 
back to their equilibrium distribution diffusively. Quite 
generally, the probability distribution of large-amplitude 
clusters with characteristic size 1 has appreciable weight 
only for 1 < E,, where E, is the correlation length. As E, 
grows on approach to the critical point, the cluster distri- 
bution becomes ever broader, thus producing a corre- 
spondingly broader distribution of relaxation times, and 
stretched-exponential relaxation over a larger and larger 
time span. That the large-amplitude clusters are impor- 
tant for this experiment can be seen from the analysis of 
polarized droplets," demonstrating that it is the contrast 
in dielectric constant between the droplet and its sur- 
rounding medium which determines its contribution to the 
optical signal. 

We note that the notion that a near-critical fluid may 
be thought of in terms of a polydisperse fluid of fluctua- 
tions on broadly-distributed length scales has been used 
before; it is implicit in the droplet modelsI6 developed for 
subcritical temperatures, and has found application in the 
theory of light scattering and transport properties near 
critical points. 1 7 9 1 8  

On the critical isochore, and as reduced temperature 
E+ 0, we write the distribution P( l )  as the Boltzmann 
factor of an excess free energy ~ ( 1 )  for an inhomogeneity 
of size 1, and for F(1) we assume a form 

In this form, F( l )  satisfies the hyperscaling relation that 
on length scales of order the correlation length, the free- 
energy density satisfies 

provided that p = (d - n ) v. 
As with the probability distribution, the relaxation 

function is taken to have a product form 

The requirement of consistency with the dynamic scaling 
hypothesis, namely that on length scales of order 
C, 2-c, yields r - qlv =z. 

In calculating the birefringence signal and, hence, the 
relaxation function R (t 1, there will be in the integrand of 
Eq. (2) additional multiplicative factors which describe 
the /-dependence of the signal from each of the clusters, 
but these introduce presumably only logarithmic correc- 
tions to the dominant stretched-exponential behavior dis- 
cussed below, and will be neglected henceforth. Within 
previous phenomenological studies of critical bire- 
fringence, these optical factors were indeed found to be 
only powers of the size 1. With this simplification, we ana- 
lyze the expression (2) with a saddle-point analysis. The 
dominant contribution to the integral comes from that 
length scale l(t ) for which the exponential 

exp [ - la-$ + bd'ld-n 11 
Is stationary, with a and b representing some constants. 

One finds. 

Substituting (9) back into (8) we obtain relaxation of the 
form (1) and (3) with 

where in the last relation we have substituted the results 
from static and dynamic scaling. Note that the value of y 
is independent of any model-specific assumptions about 
the form of the free-energy density f (I). 

The consistency of the result for the exponent of the 
time constant can also be seen directly from the saddle- 
point equation. From (10) and the relation p 4 d  - n) v 
we find T - E - ' ~ " ~ )  so that the length probed at the 
characteristic time xp scales like l ( x ) - - s v  and so is pro- 
portional to the correlation length. Further, the scale l ( t )  
grows very slowly with time, roughly proportional to t 'I5 
(see below), so even over the duration of the experiments 
reported here, 1 varies only by a factor of order unity. 
Surely at sufficiently long times we expect deviations from 
the results obtained here, when the length scales probed 
are much larger than the bulk correlation length. 

With four new exponents in Eqs. ( 5 )  and (7) and only 
two scaling relations invoked thus far, the determination 
of the specific values of the exponents p and r, and, hence, 
the power x in the stretched exponential, requires more 
structure to the free-energy density f (1 1. We propose first 
that f (1) have a generalized Landau form 

where X is-the compressibility, whose inverse measures the 
distance from the critical point, and m(l)  is the magneti- 
zation (amplitude of the order parameter fluctuation) on 
length scales 1. If we coarse-grain the system on the 
length scale 1, we find that the mean magnetization in 
boxes of this size is distributed around m =0 according to 
some distribution P(m). The width of P(m) has the in- 
terpretation of the mean magnetization m(l). From vari- 
ous renormalization-group arguments, from studies of 
droplet models, and from Monte Carlo simulations, it is 

that for 1 on the order of the correlation length 

p being the usual order-parameter exponent. 
With the ansatz (12) and with (1 1) we find p = y and 

n '=2p/v, consistent with static scaling. Finally, from the 
dynamic scaling hypothesis extended to the hydrodynamic 
regime, the relaxation time is expected to behave as 
~ , - f l ~ / k ~ ~ ,  f being the viscosity, which has a weak 
divergence with a power-law exponent of x,,̂ O.OS. From 
the above, we find a stretch exponent 
x- (d -2p /v ) / (d -2p /v+3)= (2 -^1 ) / (5 -q )  as in Eq. 
(4). 

Finally, we note that stretched-exponential relaxation 
with a diverging time constant is also a signature of the 
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glass transition in certain materials. It has been found 
that the exponent x is somewhat material-dependent, 
falling in the range of ==0.5 -0.8, and that T diverges 
with the so-called Vogel-Fulcher law T-exp[A/(T 
-To)], with To somewhat less than the glass transition 
temperature Tv. The experimental data may also be con- 
sistent with a power-law divergence in T - T ~ . ~ ~  Whether 
a scaling theory of these phenomena may be developed 
along the lines of that which we have presented for binary 

mixtures remains an open question, as does a microscopic 
theory of the phenomena described here. 
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