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Abstract

Wetting, adhesion, and adsorption phenomena are considered which involve

the mutual interaction of low-dimensional objects such as interfaces, mem-

branes, and polymers. In general, the direct interactions arising from inter-

molecular forces are strongly renormalized by thermally-excited shape

fluctuations. This renormalization leads to a variety of unbinding transitions

which exhibit complex critical behavior. The corresponding renormalization

group flow is governed by a line of nontrivial fixed points and has a parabolic

character.

1. Introduction and outline

Low-dimensional objects or manifolds such as interfaces,

membranes, and polymers are usually soft and flexible and

thus undergo thermally-excited shape fluctuations. In this

paper, I will discuss the influence of these shape fluctuations

on the mutual interactions between the manifolds. Such

interactions govern various physical phenomena such as wet-
ting, adhesion, and adsorption processes, see Section 2.

Quite generally, the shape fluctuations renormalize the

direct interactions which arise from intermolecular forces.
This renormalization acts to increase the repulsive part of the

interaction. In fact, sufficiently strong fluctuations overcome
the attractive part of the direct interactions and lead to phase

transitions from bound to unbound states of the manifolds.

For interfaces, membranes, and polymers, these unbinding
transitions represent wetting, adhesion, and adsorption tran-

sitions, respectively.

Some insight into the renormalization by shape fluctu-

ations can be obtained from simple scaling arguments. Thus,
one may derive an effective fluctuation-induced interaction if

the manifolds are viewed as ensembles of humps or blobs, see
Sections 3 and 4. Superposition of this fluctuation-induced
interaction and the direct interaction leads to the correct

identification of several scaling regimes (or universality

classes), see Section 5.

However, the critical behavior at the unbinding transition

cannot be obtained, in general, by such a simple approach.

Instead, one has to use genuine renormalization group (RG)
methods which include shape fluctuations on many length
scales. One then finds that the RG flow of the interactions is
quite complex: it involves a whole line of nontrivial fixed

points and has an unusual parabolic character, see Section 6.

In this review, I will omit all technical details and try to

emphasize the basic concepts which lead to a unified view of

wetting, adhesion, and adsorption phenomena. The inter-

ested reader may find some of the missing details in Ref. [1].

2. Wetting, adhesion, and adsorption phenomena

A variety of physical phenomena is governed by the mutual

interaction of interfaces, membranes, and polymers. The

geometry of these phenomena is shown in Fig. 1.

Wetting phenomena occur when an interface between two

macroscopic bulk phases, and , contains a thin film or

layer of a third phase, , see Fig. 1(a). The intermediate

layer is bounded by two interfaces, and its thickness is

determined by the mutual interactions of these interfaces [2].

Such a geometry has been experimentally observed in
many different systems including multilayer adsorption of

small molecules, surfaces melting, and surface-induced
disorder.

Adhesion of an oriented membrane onto an interface is
shown in Fig. 1(b). Such a geometry underlies, e.g., the

construction of biosensors where a lipid bilayer is "immobi-

lized" onto a solid substrate. Likewise, the membrane in

Fig. 1(b) can be a small segment of a large lipid vesicle which

adheres to the interface. One may also replace this interface

by a second membrane and, thus, consider the mutual inter-
action of two oriented membranes [3].

Adsorption of a polymer onto an interface or substrate is
shown in Fig. 1(c). For good solvent conditions, the adsorbed

polymer forms a random coil which is constrained by the
substrate potential [4]. Such polymers are important, e.g., for

the stabilization of colloidal suspension. In the context of
biophysics, they serve as simple models for the macromol-

ecules which are attached to biomembranes.

Finally, adsorption or binding of a crumpled membrane to
an interface is shown in Fig. 1(d). Crumpled membranes are

the 2-dimensional analogues of polymers. Such highly con-
voluted surfaces are present in microemulsions, i.e., in mix-

tures of water, oil and surfactant where they separate water

and oil domains [3].
The low-dimensional objects or manifolds shown in

Figs 1 (a)-(d) form bound states in the sense that their mean

separation has a finite value. These states require the presence
of some attractive interaction between the manifolds.

For a given shape of the interfaces, membranes, or poly-
mers, their mutual interaction directly reflects microscopic
intermolecular forces. This direct interaction consists of

several short-ranged and long-ranged contributions: e.g.,
electrostatic interactions arising from the forces between

charges molecules, van der Waals interactions as a result of

dipole-dipole forces, or structural interactions which usually
arise from short-range order within the solvent.

There is, in fact, a huge literature on intermolecular forces

and the corresponding direct interaction [5]. However, it has
been realized only recently that these interactions are strongly
renormalized by shape fluctuations. Here, I will focus on
thermally-excited fluctuations which increase the configur-

ational entropy of the manifolds.
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Fig. 1. (a) Geometry of wetting, surface melting and related phenomena;
(b) adhesion of an oriented membrane; (c) adsorption of a polymer; and

(d) adsorption of a crumpled membrane. Distinct thermodynamic phases are
denoted by and .

3. Hump picture for oriented manifolds

The fluctuating manifolds shown in Figs 1(a) and (b) are
orientationally ordered, i.e., their normal vectors have a

preferred direction. In general, each fluctuating manifold can
be characterized by a persistence length, , for its orien-
tational order [6, 7]. In this section, I will consider oriented
manifolds which have a linear size

The bound state of an oriented manifold can be viewed as
an ensemble of humps [8, 9]. On large scales, these humps
have a longitudinal extension set by the correlation length, ,
for transverse displacements, and a typical roughness

with (3.1)

For a free or unbound manifold of longitudinal extension ,

this relation becomes where is the overall ampli-
tude of the transverse fluctuations.

For an interface, the exponent depends on the spatial
dimensionality, of the system and on the nature of the two
adjacent phases which can be fluids, periodic crystals, or
quasi-crystals; it also depends on the presence of quenched
disorder which I will not discuss here [1]. For an oriented

membrane, the exponent depends on the internal membrane
structure which can be fluid, crystalline or hexatic [1]. For
example, one usually has for interfaces in ,
and for fluid membranes in

Since is the correlation length for transverse displace-
ments, different humps are essentially uncorrelated. Thus, a
bound manifold with projected area, , may be viewed as an
emsemble of independent humps. Here is the

intrinsic or parallel dimensionality of the manifold which is
embedded in dimensions [10]. The thermal free
energy of each hump should be as suggested by the
equipartition theorem [11]. Therefore, the thermal free
energy, , of the whole manifold can be estimated by

(3.2)

and the thermal free energy per unit projected area is

(3.3)

In addition, one may assume that the mean distance,
between the two interacting manifolds is . It turns out
that this assumption is fulfilled as long as the direct interac-

tion is sufficiently short-ranged, see Section 5 below. In these
cases, one has [8, 9]

with (3.4)

This expression can be regarded as a fluctuation-induced
repulsion acting between two oriented manifolds.

Consider again the geometry shown in Fig. 1 where one of
the two interacting manifolds is a flat and, thus, oriented
interface. If the other manifold is characterized by , its
persistence length is infinite, and the manifold will stay
oriented on arbitrarily large scales even in the unbound state.
On the other hand, for , the persistence length is

finite: the unbound manifold will loose its orientation and
start to crumple as soon as its linear size

4. Blob picture for crumpled manifolds

Bound states of crumpled manifolds are displayed in Figs 1(c)
and 1(d). For an adsorbed layer of thickness the large scale
configurations can be viewed as blobs of linear size [12-14].
Each blob contains a manifold piece with total area
consisting of segments of linear size . Here, is a small-
distance cutoff for the crumpled membrane, and is its
intrinsic dimensionality as before. The linear size of the blobs
and the segment number within each blob satisfy

with (4.1)

For a free or unbound manifold, this relation becomes
where is the radius of gyration and is the

total monomer number total area of the manifold.

For polymers with , the exponent depends on
, on its linear or branched geometry, and on the

presence or absence of electric charges. For crumpled mem-
branes with , this exponent is believed to depend also
on the internal membrane structure. For example, one has
[15] for linear polymers in [16].

It is again plausible to assume that correlations between
different blobs can be neglected. Then, a crumpled manifold

with monomers consists of independent blobs.

The thermal free energy stored within each blob should again

be because of the equipartition theorem. Therefore, the
thermal free energy, , of the crumpled manifold can be
estimated by

(4.2)

Then, the thermal free energy per unit intrinsic area is [13]

with (4.3)

5. Different scaling regimes for the interactions between
manifolds

In the two previous sections, the excess free energy arising

from thermally-excited shape fluctuations of a bound mani-
fold has been estimated in a heuristic way. This led to an
effective fluctuation-induced repulsion, , which scales as

with and

for oriented and crumpled manifolds, respectively [17, 18].
Now, this excess free energy will be compared with the

direct interaction arising from intermolecular forces such as

van der Waals, electrostatic or structural forces. For each
shape or configuration of the bound manifold, these forces

Physica Scripta T29



Renormalized Interactions of Interfaces, Membranes and Polymers 261

give rise to an interaction free energy, , which represents
the excess free energy of the given bound state as compared
with the unbound state of the manifold. For oriented and
crumpled manifolds, is defined to be the interaction
free energy per unit projected and per unit intrinsic area,
respectively.

For the geometries as shown in Fig. 1, the direct interac-
tion, , depends on the coordinate which measures the
distance of the fluctuating manifold from the flat interface.
Then, the interaction free energy of the bound manifold can
be estimated by

with

Now, consider a certain pair of manifolds characterized by
the fluctuation-induced interaction and, thus, by
a certain value of . Then, the space of all possible direct
interactions, , between these manifolds consists of four
different scaling regimes. These regimes can be identified by

a simple comparison or superposition of and both for
oriented [8] and for crumpled [13] manifolds. The four
regimes are defined as follows:

(i) The mean field (MF) regime characterized by

for large (5.1)

where represents the repulsive part of . In this situ-
ation, the mean separation, of the manifolds is not affected
by shape fluctuations [2, 19]. This regime contains, e.g., wet-
ting [20] or surface melting [21] in 3-dimensional systems
when governed by long-ranged van der Waals forces;

(ii) The weak-fluctuation (WFL) regime is defined by

for large (5.2)

where represents the attractive part of [2, 19, 13]. The
critical behavior within this regime can be obtained in a
rather simple way by minimization of . The WFL
regime contains, e.g., complete wetting or edge melting in
2-dimensional systems [1, 22], and adsorption of polymers or
crumpled membranes by a weak gravitational field [13].

In addition, the superposition Ansatz, , indi-
cates two nontrivial scaling regimes even though it does not
give a correct description for the critical behavior within these
regimes:

(iii) The intermediate-fluctuation (IFL) regime with

for large (5.3)

In this case, the superposition Ansatz indicates that the criti-
cal behavior depends both on the long-ranged tail and
on the short-ranged part of . In fact, this regime con-
tains three different subregimes [13, 23] with rather complex
critical behavior, see Section 6 below; and

(iv) Finally, the strong-fluctuation (SFL) regime charac-
terized by sufficiently short-ranged interactions with

for large (5.4)

In this regime, the superposition Ansatz predicts a first-order
transition while the transition is, in fact, continuous and
governed by universal critical exponents. These exponents are
known in some but not in all cases of physical interest
[24-27]. The SFL regime contains, e.g., adhesion transitions
of fluid membranes which have been recently observed in
experiments [28].

The above classification scheme must be modified for

wetting phenomena in governed by
and short-range direct interactions [1]. Indeed, this case with

is expected to exhibit rather subtle fluctuation effects.
On the other hand, computer simulations are, so far, consis-
tent with mean-field behavior over the accessible temperature

range [29, 30]. Thus, recent experiments on surface melting of
Pb [31, 32] and on surface-induced disorder of CuAu [33, 34]
are likely to probe mean-field behavior as well [35, 36].

6.  Parabolic flow of the renormalized interactions

The different scaling regimes as given by eqs. (5.1)-(5.4) have
been obtained from the rather heuristic superposition of
fluctuation-induced and direct interactions. This classification
is, however, fully confirmed by more systematic methods. On
the other hand, the superposition Ansatz fails for the critical
behavior within the nontrivial regimes as given by equations
(5.3) and (5.4). As explained below, a functional renormaliz-
ation group (RG) approach reveals that the critical behavior
within these regimes is, in fact, rather unusual.

6.1 Effective Hamiltonian
To proceed, let us again consider the geometry displayed in
Figs 1(a) and (b). As before, the shape of the fluctuating
manifold will be parametrized by where is a

-dimensional coordinate parallel to the flat interface (with
. The effective Hamiltonian of the fluctuating

manifold has the generic form

(6.1)

with

(6.2)

and a small-distance cutoff, a, is implicitly contained. The
first term in eq. (6.1) describes the elastic energy associated
with the shape fluctuations while the second term represents
the direct interactions of the manifolds. For interfaces and
membranes, the elastic constant, is the interfacial stiffness
and the bending rigidity, respectively. As usual, the statistical
weight for the manifold configurations is given by the Boltz-
mann factor,

A Hamiltonian of the form (6.1) can also be used for the
adsorption of crumpled manifolds, compare Figs 1(c) and
(d), provided one ignores the selfavoidance constraint and
allows for selfintersections [13]. The shape of such an ideal (or
phantom) manifold will be parametrized by

where is an appropriate intrinsic coordinate.
Then, the effective Hamiltonian for the crumpled (but ideal)
manifold becomes [13]

(6.3)

In this case, the elastic constant, is entropically generated
and . For such a model, the and coordinate
decouple and the effective Hamiltonian for has the same
form as eq. (6.1) with

The statistical properties which follow from the models
as given by eq. (6.1) or (6.3) can be studied by a variety
of theoretical methods. So far, the most useful approach has
been a functional RG which represents an extension of
Wilson's approximate recursion relations [37, 38].

Physica Scripta T29



262 Reinhard Lipowsky

6.2 Lines of renormalization group fixed points

For infinitesimal rescaling factor , this functional
RG leads to the nonlinear flow equation [38]

(6.4)

for the renormalized interactions with the scale factors

and (6.5)

where and for oriented
and ideal crumpled manifolds, respectively. The "initial"
interaction at is given by the direct interaction:

Now consider the space of all interactions which
decay to zero for large at least as . This function space
contains both the strong-fluctuation (SFL) and the inter-
mediate-fluctuation (IFL) regime defined by eqs. (5.4) and
(5.3). A detailed study of the RG transformation as given by
eq. (6.4) reveals that this space is governed, for each value of
, by a whole line of RG fixed points, , with

[39].

It is convenient to use the dimensionless variables

(6.6)

and

(6.7)

Then, the line of fixed points, , is charac-
terized, for large , by the asymptotic behavior [39]

(6.8)

The amplitude of the long-range power-law tail is found to
be convex downwards as a function of and to have a
unique minimum at with

(6.9)

and [40].
Close to this minimum, the RG flow within the -dimen-

sional interaction space can be reduced to the flow within the
2-dimensional space as given by [40]

(6.10)

and

(6.11)

with . The RG trajectories of this flow are shown
in Fig. 2(a).

6.3. Parabolic versus hyperbolic flow

The parabola displayed in Fig. 2(a) represents the line of RG
fixed points. This line has two branches: and
which merge at the point . The physical
interpretation of these branches will be explained in the next
section. First, I will discuss the parabolic character of the RG
flow.

It is instructive to change variables according to
and . Then, the flow

equations (6.10) and (6.11) become

and (6.12)

Such a recursion relation has been previously considered by

Fig. 2. (a) Renormalization group (RG) flow within the 2-dimensional
space. The separatrix between bound and unbound states consists

(A) of the unique RG trajectory which is mapped onto , and (B) of
the lower branch, , of the line of fixed points; (b) equivalent parabolic flow:

and (c) distinct hyperbolic flow.

Wegner [41]. Within the space, the RG trajectories
are parabola given by const., see Fig. 2(b). The
line of fixed points now lies on top of the axis with

The parabolic flow shown in Fig. 2(b) must be distinguished
from the well-known Kosterlitz-Thouless flow as displayed
in Fig. 2(c) [42]. The corresponding recursion relation is given

by

and (6.13)

This Kosterlitz-Thouless RG also leads to a line of fixed
points at , as shown in Fig. 2(c), but the RG trajec-
tories are hyperbola given by const. rather than
parabola.

6.4 Phase diagram and critical behavior
The parabolic RG flow shown in Fig. 2(a) has the following
interpretation. All parameter values which flow into the
upper branch, , of the line of fixed points correspond to
unbound states of the manifolds. All parameter values which
are mapped under the RG to large negative values of
corresponds to bound states of the manifolds. The separatrix
between these two regions of the space is the locus of
unbinding transitions. This locus consists (A) of the unique
RG trajectory which flows into the special point , and
(B) of the lower branch, , of the line of fixed points.

All states with are bound states. This
implies, via eqs. (6.6) and (6.7), that a direct interaction,

, binds the manifolds together provided

(6.14)

where is a numerical coefficient. This property can
be understood from the heuristic approach described in
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Section 5. Indeed, the superposition of fluctuation-induced and
direct interactions leads to

with (the dependent prefactor of has
been omitted in Sections 3-5). Thus, within this simple
approach, the fluctuation-induced repulsion cannot over-
come the attractive part of the direct interaction if

which is identical with eq. (6.14) apart from the

numerical coefficients.
For a direct interaction with fixed

the manifolds undergo an unbinding transition as approaches
from below with . The correspond-

ing temperature trajectory in the space intersects part
(A) of the separatix with . In this case, integration of
the RG flow as given by eqs. (6.10) and (6.11) leads to the
critical behavior [40]

(6.15)

for the mean separation, of the manifolds with
[43]. Thus, the unbinding transition in subregime (A) is of

infinite order.
On the other hand, consider a direct interaction of the

more general form with
Then, the temperature trajectory can intersect part (B) of the
separatrix with . In this case, one obtains the power
law behavior [39, 40]

with (6.16)

for small , and the critical exponent is found to
depend on the amplitude of the long-ranged tail and, via

and , on . Thus, subregime (B) is characterized by
unbinding transitions of second order but with non-universal
critical exponents.

Subregime (B) contains the case which cor-
responds to the SFL regime with for large ,
see Section (5.4). In this case, the RG considered here leads
to a universal value for the critical exponent which is
predicted to depend only on [44]. If one ignores possible
higher-order terms in eq. (6.11), extrapolation of eq. (6.16)
leads to the estimate

(6.17)

for the SFL regime. It turns out that higher-order terms must,
in fact, be absent in an exact RG flow for . This follows
by comparison with exact results for wetting in
[23]. In this case, the estimate (6.17) is indeed quite good: the
RG transformation (6.4) leads to [40] and

for and, thus, to via eq. (6.17)
which must be compared with the exact value for
wetting in

For large positive values of , one should enter a third
subregume (C) which is, however, not correctly described by
the RG approach used here. In this subregime, the continu-
ous unbinding transition is preempted by a discontinuous
transition: the transition then exhibits a jump in the first

derivative of the free energy. Indeed, the free energy, , scales
as [45]

(6.18)

for with , compare eq. (6.16). Therefore,
the transition becomes discontinuous for where
satisfies . However, these first-order transitions

are anomalous since they still exhibit nontrivial scaling
properties [23, 39]: the probability distribution, , for the
mean separation of the manifolds has a power law tail
for large For , one has
with . This dependence of is related to
the fact that, for , the exact RG flow is parabolic for all
values of . It is not obvious how depends on if one has

higher-order corrections in eq. (6.11) as expected for

6.5 Related phenomena

Finally, I want to argue that the RG flow and, thus, the phase
diagram shown in Fig. 2(a) should apply to unbinding
phenomena in general. In particular, these features should
apply (i) to adsorption of selfavoiding crumpled manifolds,
and (ii) to wetting in the presence of quenched disorder.

As mentioned, the branch of the line of fixed points,
compare Fig. 2(a), corresponds to unbound states. Such

states of the manifolds are scale invariant. For an oriented
manifold parametrized by , the associated scale
transformation has the form and with
rescaling factor . Likewise, crumpled manifolds with

are invariant under and
When such a scale transformation is applied to the direct
interaction, one obtains or, for

(6.19)

with or , i.e., the first two terms of the full recursion
relation as given by eq. (6.4). The linear transformation
(6.19) already leads to a line of fixed points given by

which approximates the branch for large
positive values of , compare Fig. 2(a).

On the other hand, for large negative values of , there
should be no unbound states and, thus, no fixed points, see
Section 6.14. Therefore, the line of fixed points should be
restricted to . Furthermore, there must be a
second branch, , which gives the separatrix for the unbind-
ing transitions. This latter branch should exhibit one relevant
perturbation while the branch for the unbound states should
be completely stable. These properties, together with the
usual assumption that the RG transformation has a smooth
dependence on the physical parameters, seems to imply that
the RG flow has the topology shown in Fig. 2(a).

7.  Summary

In summary, the direct interactions of interfaces, membranes
and polymers can be divided into several scaling regimes or
universality classes (Section 5). If the interactions are suf-
ficiently short-ranged, one enters two nontrivial regimes, the
intermediate-fluctuation and the strong-fluctuation regime.
These regimes are governed by a line of nontrivial renor-
malization group (RG) fixed points and exhibit an unusual.
RG flow which has a parabolic character (Section 6). Such a
flow has been explicitly derived for oriented and for ideal

crumpled manifolds but should be a generic feature of
unbinding phenomena. The various regimes are accessible to
experiments on wetting, adhesion, and adsorption.
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