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Critical and complete wetting transitions are studied in the solid-on-solid limit of the three- 
dimensional Ising model. The surface order parameter and coverage are calculated using Monte 
Carlo methods for various T > TR (the roughening temperature). The critical behavior is found 
to be universal but consistent with renormalization-group predictions. We predict that for 
T m :  (i) the parameter (o^ in the Ising model; this is much less than the previous estimate 
@^I; (ii) the length scale in the effective interface potential is about twice as large as the Ising 
bulk correlation length. 

Wetting phenomena occur when the contact region 
separating two distinct bulk phases a and y contains a lay- 
er or film of a third phase p. Often, one of the two bulk 
phases, say 7, is an inert spectator phase which does not 
equilibrate with the a and /3 phases on experimentally 
relevant time scales. This is the case, for example, for 
multilayer adsorption on an inert solid substrate and for 
the surface melting of a low-vapor-pressure solid in con- 
tact with an inert vapor phase or vacuum. 

From the theoretical point of view, the simplest realiza- 
tion of such systems is the semi-infinite Ising model with 
nearest-neighbor interactions. In this model, the influence 
of the spectator phase is modeled by an effective surface 
field which favors the formation of a p layer of, say, down 
spins between the surface and the bulk up-spin a phase. 
For spatial dimension d =2, this model can be solved ex- 
actly, and is known to lead to a line of critical wetting 
transitions characterized by universal exponents.' For 
short-range forces, similar universal wetting behavior is, 
in fact, expected for all dimensions 1 < d < 3. However, 
for the physically most relevant case d =3, the wetting be- 
havior is still a matter of controversy. While renormaliza- 
tion group (RG) (Refs. 3-51 and Monte Carlo (MC) 
(Ref. 6) studies of Gaussian interface models indicate 
rather unusual nonuniversal critical behavior, the results 
of recent Monte Carlo simulations of wetting in the 3D Is- 
ing model7 are consistent with the (universal) predictions 
of mean-field (MF) theory. 

A possible explanation of this discrepancy is that the 
asymptotic scaling region is very small in the 3D Ising 
model and has not been reached in the simulations of Ref. 
7. Indeed, a Ginzburg criterion has been used8 to esti- 
mate that the crossover from MF to nonclassical behavior 
was not et reached in the simulations of Binder and co- 
workers. A somewhat contradictory result has been ob- 
tained from a numerical solution of the functional 
renormalization-group equations:6'9 A broad crossover 
region is predicted, with measurable deviations from MF 
behavior even at rather large values of the reduced fields. 
Neither approach is, however, conclusive because the pre- 

dictions depend on the values of various unknown model- 
dependent parameters. Furthermore, both results are 
based on analyses of the Gaussian interface model, which 
may not, in fact, capture the physics of wetting in the 3D 
Ising model. 

In order to resolve this discrepancy, we consider here 
the solid-on-solid (SOS) limit of the 3D nearest-neighbor 
Ising model on a cubic lattice with a (100) surface. On 
the one hand, this model is close enough to the original Is- 
ing model to allow a direct comparison of nonuniversal 
quantities. On the other hand, it is simple enough that 
much larger lattices (and smaller fields) can be simulated. 
Restricting ourselves to the case in which the coupling 
constant at the surface (Js) equals that in the bulk (J), 
our Hamiltonian is given by 

where the discrete variables z~=0,1,2, .  . ., measure the 
local distance of the (a$) interface from the surface in 
units of the lattice parameter a .  The second term in (1) 
represents the direct interaction of the interface with the 
surface. It has the form 

where H and H I  are the bulk and surface fields in the 
original Ising model. In order to investigate the influence 
of the discreteness of the height variables, we also consid- 
er another version of (1) with continuous zi 2 0 in which 
the surface field H I  is mimicked by a square-well poten- 
tial W(z)--WoforO<z<l. 

As described further below, we have performed exten- 
sive MC simulations of this model, both for discrete and 
continuous 21. A detailed analysis of our MC data shows 
that this model belongs to the same universality class as 
the Gaussian interface model described by the effective 
Hamiltonian 
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for the variable l=az, with the interfacial stiffness 
SIT = C I  (J/Ta) and cl3 10.4. The direct interaction po- 
tential U(1) has the form 

for large 1, where h=2H/Ta2 and the length scale $ is 
given by p c 2 T / J  with ~ 2 ~ 0 . 1 7 5 .  lo The amplitude A is 
proportional to the deviation of the surface field from its 
value at criticality: A-Hlc(T) - Hl.Thus, we find that 
the dimensionless parameter a= T/4a:Sa 2$2 which deter- 
mines the singular behavior at the wetting transition has 
the universal value a^ 7 for the Ising model in the SOS 
limit. 

The Gaussian interface model defined by (3) and (4) 
should be regarded as the coarse-grained version of (1) 
and (2). In the SOS model, the interface has an intrinsic 
width which is set by the lattice parameter a. In the pro- 
cess of eliminating short-wavelength interface fluctua- 
tions, this width increases to e. In the Gaussian interface 
model previously inve~tigated,~"~ the scale $ is replaced by 
the bulk correlation length &,. The latter scale is deter- 
mined, in part, by interfacial overhangs and droplet exci- 
tations which are ignored in the SOS limit. 

The SOS model represents a low-temperature approxi- 
mation to the Ising model. We are concerned here with 
critical wetting transitions which occur for T > TR, where 
J/TR ~ 0 . 4  1 is the Ising model roughening temperature. 
A priori it is not clear if the SOS limit is still a good ap- 
proximation for such temperatures. However, we esti- 
mate that the parameters C$ and ZIT obtained for the SOS 
model are in reasonably good agreement with the corre- 
sponding quantities for the Ising model, as derived from 
the wetting simulation data,7 at temperatures J/T==0.35. 
This allows us to make two predictions concerning critical 
wetting behavior in the 3D Ising model: (i) The dimen- 
sionless parameter a is approximately equal to for 
J l T 4 . 3 5 ,  i.e., is much smaller than the previous esti- 
mate a ~ l . ~  This implies that the length scale e is about 
twice as large as the bulk correlation length of the Ising 
model" at this temperature. (ii) In order to observe devi- 
ations from MF critical behavior and enter the asymptotic 
scaling regime in MC simulations of the 3D Ising model, 
one needs to study lattices with a lateral dimension of at 
least L - 100-200. 

Simulations were performed on model (11, (2) at 
J /T  ~ 0 . 3 5  and 0.175 using an (L + 1 ) x L square lattice 
with helical boundary conditions. In the model with con- 
tinuous z;, several temperatures, J /T  -0.125, 0.175, 0.25, 
0.35, and 0.7, were investigated in order to verify the 
universality properties discussed above. In this case, 
square lattices containing L * sites with periodic boundary 
conditions were used. Lattice sizes up to L =200 were 
employed and generally on the order of lo6 MC updates 
per site were used in evaluating the averages. Speeds of 
over lo6 updateslsec were obtained on a Cray X-MP us- 
ing a fully vectorized code. 

In all cases we find that for H -0, a plot of e -J(z)10-35T 

vs Hl /J  (or WdJ)  is asymptotically a straight line. We 
determined the critical values of the surface field in this 
way to be HlC/J- -0.897 for J l T 4 . 3 5  and Hlc/J 

-0.086 for J / T  =O. 175. Plots of <z) and logio(Am 1 ) 

(where Am, 1 -<&,o)) vs log10(8H1/j) are shown in 
Fig. 1. Asymptotically, we find (z) =A I ln(8H\/J) + A2 
and l n ( ~ r n ~ ) - M ~ ~ l n ( < ? H l / J )  with A\,  A2, and Mcw 
given in Table I. Since Awl- (MZI/J)^, we thus obtain 
pi== 1.62 (1.57) for J /T  -0.35 (0.175). The difference 
between these two values for is not statistically 
significant. This result for agrees with the RG theory 
developed in Refs. 3-5 for a unique value of a. In partic- 
ular, for a < $ , this theory implies B\ '-(I + a ) / ( l Ã  a )  
and <z)/$- - [(1+2a)/(l -a)]ln(SH1/J), where $ is a 
model-dependent length scale. Thus, we obtain a==0.24 
(0.22) and $J/T=O. 18 (0.19) at these two temperatures. 

Next, consider field-driven critical wetting, i.e., the 
singular behavior for H/J+ 0 at Hl =Hlc. Our results 
for (2) and Am1 at J /T  =0.35 in this case are shown in 
Fig. 2. Fits to the asymptotic behavior (z) = Bl ln(H/J) 
+B2 and l n ( ~ m  1) = Mfdln(H/J) yield the coefficient 
listed in Table I. Since we expect Awl - (H/J) 1 1 f 2 v "  

with vn-(1 -co) and <z)/f= - $ (1 + 2 < o ) l n ( ~ / ~ )  
for a < 7,  we obtain a=0.26 and ^J/T=O.l8, which is 
again consistent with our previous results. 

As a final check, we have plotted data for (2) vs 
loglo(H/J) obtained at the complete wetting transition 
(using Wo -0 with continuous zj) for J / T  -0.125 in Fig. 

FIG. 1. (a) Coverage <z> and (b) logarithm of excess surface 
order parameter logio(Ami) for model (1) at J/T=pJ-=0.35 
and 0.175 (and P O )  plotted vs log~o(SH\/J). The solid lines 
are fits to the asymptotic data described in the text. 
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TABLE I. Coefficients of fits to the asymptotic behavior of the coverage and ln(~rni) at the critical 
wetting (A\,Ai,Mpn), field-driven critical wetting (Bi,Bi,Mu), and complete wetting (Ci,Cz) transi- 
tions. 

JIT A i A z B I Bz Ci C2 Mew Mtd 

0.35 - 1 .OO -2.00 -0.38 -0.48 1.63 0.63 I 

0.175 -1.98 -0.70 1.57 
0.125 -1.57 1.76 - 

3. A fit to the asymptotic data yields (2) = C\\~(H/J)  
+Ci, with Cl and CZ given in Table I. On the other 
hand, the above-mentioned RG theory predicts 
<z)/{ = - { (2+ (o)ln(H/J) at the complete wetting 
transition, so that we obtain (o==0.25 and fJ/T==0.17. 

All of our results are therefore consistent with the RG 
predictions for a== $. Several comments are in order. 
First, note that rather large system sizes are required to 
determine the critical value of the surface field HIc/J. In 
addition to the fact that VII is rather large (==1.3 in the 
present case), another complicating factor is that for 

I I I I 

critical wetting (a1 

I 

critical wetting 

FIG. 2. (a) Coverage <z> and (b) logarithm of excess surface 
parameter log1o(~mi) for model (1) at J/T=f!Jg0.35 (and 
HI "Hic) plotted vs logio(H/J). The solid lines are fits to the 
asymptotic data as described in the text. The deviations of the 
data from the fit at small H/J are due to finite-size effects (see 
Re!. H). 

H-0, static expectation values of many quantities are 
well defined only in the thermodynamic limit. In fact, for 
H"0  and any finite L>>fn, there is an exponentially 
small probability that the interface will "tunnel" out into 
the wet state. I' This will almost never happen on normal 
simulation time scales until 5 L. As can be seen from 
Fig. 1, the requirement f l l  S L is rather severe. Except for 
one data point for L=40 at J/T=O.35, only data 
unaffected by finite-size effects have been plotted in this 
figure. For a given lattice size, data taken at smaller 
values of SHi/J exhibit noticeable deviations from the 
infinite system behavior. For L -40 this means that reli- 
able data can be obtained at JlTÃ‘0.3 only for 
SH1/J5;4.5x and for L -100, SH1/J5;2.2x lo-'. 
The asymptotic scaling regime can thus only be entered 
when L is greater than 40 or 50. This leads us to the con- 
clusion that in the temperature direction (i.e., for 
8H\/J-0 at HÃ‘O) Binder and co-workers7 have just 
started to enter the asymptotic regime for their largest 
system size (for J /T  ~ 0 . 3 5 ) .  Nevertheless, their value for 
the critical surface field, HlC/J= -0.89, at this tempera- 
ture is remarkably close to our value. 

In the H direction, Â£\\-(H/J \ n  so that the system 
size requirements are less stringent.6 Furthermore, one 
has better control over the finite-size behavior,'' and it ap- 
pears that for J/TÃ‘0.35 Binder and co-workers do 
indeed enter the asymptotic scaling region in this case. 

1 \x 
\o 

complete wetting 
x̂ 13 J = 0.125 

%;- potential= 0 

FIG. 3. Coverage <z> for J/~=pJ=O.l25 at the complete 
wetting transition (W0~0  and continuous zi)  plotted vs 
logw(H/J). The solid line is a fit to the asymptotic data. The 
deviations of the data from the fit curve at small H/J are due to 
finite-size effects (see Ref. 1 1 1. 



964 BRIEF REPORTS - 42 

The coverage m, which they measure is related to the 
mean distance (z) of the interface from the surface by 
ms = 2M (z), where M is the bulk magnetization. The 
data for ms in Fig. 1 (a) of Ref. 7(a) (field driven critical 
wetting) thus yields <z) = - 0.35ln(H/~).  Assuming 
a== $, this implies that the length scale Â discussed above 
is approximately equal to 0.46 in this case, in surprisingly 
good agreement with the value 0.5 we obtain from our 
data. Identifying this length scale with the bulk correla- 
tion length tb=O.3, however, does not allow for a con- 
sistent interpretation of the data. It should also be men- 
tioned that the finite-size effects they observe for H/J+ 0 
at H 1  =Hic are in agreement with what we find [compare 
Fig. l (a) of Ref. 7(a) with our Fig. 21, indicating that 6 
is approximately the same in both cases. Finally, note 
that the data for Am, (at J / T  =0.35) in Fig. 9(c) of Ref. 
7(b) is also consistent with (Ãˆ $. This makes us reason- 
ably confident that a-0.25 at J/Ta0.35 in the 3D 
nearest-neighbor Ising model.13 However, as discussed 
above, lattices with a lateral dimension L on the order of 
100-200 will probably be required to confirm this behav- 
ior. 

It would be extremely interesting to have a quantitative 
RG or coarse-graining procedure to map the SOS Hamil- 
tonian onto model (31, (4). A simple Migdal-Kadanoff 
procedure does indeed generate a single-site potential 
similar to (4) as the SOS interaction term is mapped into 

the Gaussian fixed-point potential; however, the resulting 
recursion relations are only qualitatively correct and do 
not indicate why a= 7 in this case. 

In summary, we have shown that the SOS model for 
wetting in d =3 belongs to the same universality class as 
the effective interface model (3) with a= $ for all tem- 
peratures T > TR. On the other hand, a detailed compar- 
ison of our data with the MC data of Ref. 7 indicates that 
the SOS model is a good approximation to the Ising model 
for T^. TR. This implies that near the roughening tem- 
perature the length scale < in the interface potential (4) is 
about twice as large as the bulk correlation length. In 
contrast to previous estimates we therefore conclude that 
the parameter a is indeed a = 4- - for T 2 TR. 

An open question which still needs to be resolved con- 
cerns the value of a ( T )  for the 3D nearest-neighbor Ising 
model in the temperature regime J/Tc < J / T  < 0.35. Al- 
though a is believed to be of order l a t  Tc, the data in 
Ref. 7 give no indication that a is larger for J / T  =0.25 
than for 0.35. Our work indicates that it should be possi- 
ble to resolve this question in the near future using highly 
optimized vectorized codes on a supercomputer. 

These simulations were performed on the Cray X-MP 
22 at  the Forschungszentrum Jiilich (GmbH). Part of 
this work was supported by the National Science Founda- 
tion under Grant No. DMR-8613598. 
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