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Unbinding transitions of fluid and polymerized membranes are studied by renormalization- 
group (RG) methods. Two different RG schemes are used and found to give rather consistent re- 
sults. The fixed-point structure of both RG's exhibits a complex behavior as a function of the de- 
cay exponent 1- for the fluctuation-induced interaction of the membranes. For 1- > 1-52, interacting 

- - - - -- -- 

membranes can undergo first-ordertransitions even in the strong-fluctuation regime. Our esti- 
mates for T S I  imply, however, that both fluid and polymerized membranes unbind in a continuous 
way in the absence of lateral tension. 

- -  - 

Membranes such as, e.g., lipid bilayers, experience a 
variety of interactions arising from intermolecular forces. 
These direct interactions can be measured when the mem- 
branes are immobilized on mica In this way, 
rather detailed information has been obtained for direct 
interactions resulting from van der Waals, electrostatics, 
or structural forces. 

In solution, membranes undergo thermally excited 
shape fluctuations on many length scales. These undula- 
tions renormalize the direct interaction and increase its 
repulsive part.3 In fact, sufficiently strong fluctuations 
overcome the attractive part of the direct interaction and 
lead to nontrivial unbinding  transition^.^ Such transitions 
were first predicted theoretically on the basis of 
renormalization-group (RG) calculations both for f l ~ i d ~ . ~  
and for polymerized (or tethered or crystallineI5 mem- 
branes. For fluid membranes, the existence of these tran- 
sitions has been confirmed by experiments on digalactosyl 
diclyceride membranes6 and by Monte Carlo simula- 
t i o n ~ . ~  In this case, both experiments and simulations in- 
dicate that the transition is continuous and, thus, of 
second order. 

Unbinding phenomena can also be studied for lyotropic 
liquid crystals, i.e., for lamellar phases (i) in two- 
component systems of water and lipid, and (ii) in mi- 
croemulsions of three or more c ~ r n ~ o n e n t s . ~  For dipalmi- 
toy1 phosphatidylcholine bilayers, an unbinding transition 
may have been observed with decreasing salinity, but its 
precise nature has not been determined so far. In some 
mixtures, two coexisting lamellar phases have been ob- 
served9 which implies a first-order transition from a small 
to a large (but finite) separation of the membranes. This 
seems to indicate that unbinding transitions could also be - 
of first order. 

The shape fluctuations of a single membrane lead to a 
characteristic membrane roughness: A membrane seg- 
ment of lateral size Ll  has a typical fluctuation amplitude 
LL-LV0 The roughness exponent S, depends on the 
internal membrane structure and. in addition. on the la- 
teral tension. Fluid membranes are characterized by 
S,= 1,3v4,11 while polymerized membranes have S, < I .  " I2  

In the latter case, recent Monte Carlo simulations indicate 
<==0.6.13 Lateral tension, on the other hand, strongly 

- - -- -- - - 

- - - 
reduces the undulations I4 which are then characterized by 
(-0(^/iog). 

Now consider two interacting membranes at separation 
1. Their steric hindrance leads to an overall loss of entro- 
py which can be regarded as an effective fluctuation- 
induced repulsion, VM - 111 ̂ with decay exponent 
=2/C.5'10 Using the aforementioned values for C, one 
obtains T - 2  and ~ = = 3 . 3  for tensionless fluid and polymer- 
ized membranes, respectively, while lateral tension implies 
T = = .  Other values for T are conceivable and could arise, 
e.g., from long-range forces within the membrane. 

In this paper, we study the nature of unbinding transi- 
tions as a function of T .  We find that (i) both fluid and 
polymerized membranes always undergo second-order 
unbinding transitions in the absence of lateral tension 
(when their bound state is governed by van der Waals 
forces); (ii) in the presence of lateral tension, unbinding 
transitions are typically first order; and (iii) membranes 
under tension may also undergo first-order transitions be- 
tween two different bound states. 

Our results are based on RG transformations for the 
membrane interaction. In principle, one can formulate 
-- - -- -- 

exact RG t r a n s f o r m a t i o n ~ ~ ~ ' ~ ~  which are, however, rather 
difficult to study for general T .  Therefore, one has to sim- 
plify these transformations by using appropriate approxi- 
mation schemes. Below, we will use and compare two 
different approximations which are based on a hard- 
cutoff l7*l8 and on a soft-cutoff I 5 * l 9  procedure, respective- 
ly. 

Both RG transformations act as nonlinear maps in the 
function space of interactions. In order to understand this 
action, we could iterate the transformations and study the 
resulting RG flow. Such an approach is, however, quite 
tedious and typically requires a large number of itera- 
tions. Instead, we will perform a global analysis of the 
fixed-point structure for both RG's which allows us to 
study the order of the unbinding transitions in a systemat- 
ic way. 

The local separation of the two interacting membranes 
will be denoted by z(x) where x=(x1,x2) is a parallel 
coordinate. For - thermally - excited undulations, the bend- 
ing free energy per unit area is given by 7 K(Vnz 2, where 
K is an effective bending rigidity and n = 1 + The mem- 
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brane configurations are then governed by the effective 
Hamiltonian 

The second term represents the direct interactions of the 
membranes and contains a hard wall at z =0 since the 
membranes cannot penetrate each other. 

Our first RG method17 represents an extension of Wil- 
son's approximate recursion relations19 and is based on a 
hard-cutoff (HC) procedure. For infinitesimal rescaling 
factor b+ 1 +As, this functional RG leads to the flow 
equation l7 

with r=2/? and dimensionless variables y -z and U Ã ‘ V  
Another approximate RG can be constructed by using a 

smooth-cutoff procedure,15919 which leads to the flow 
equation 

First we study the fixed points, U* (y ) with aU*/as -0. 
In the HC case, they satisfy 

a u *  rU*+y-+ln 
9Y 

and in the soft-cutoff (SC) case, we have 
2 

a u *  a 2 u *  - [F] -o r u *  +y- 
ay +F 

Therefore, the rescaled fixed points depend only on one 
parameter, namely T. 

The fixed-point Eqs. (4) and (5) must be supplemented 
by appropriate boundary conditions. For unbinding tran- 
sitions, one wants to include a hard wall at y -0 and a tail 
which decays to zero for large y. These boundary condi- 
tions lead to a whole line of fixed points ~ * ( y )  
Â¥u (y 1 a )  with a > 0. For the HC case, the asymptotic 
behavior of these fixed points is given by5 

for small y, and by 

for large y. For the SC case, asymptotic analysis of (5) 
leads to 

for small y, and the same asymptotic behavior as in (7) 
for large y. 

The function p ~ ( a )  for the power-law tail of the fixed 
points can be obtained by numerical integration of (4) 
and (5) using (6) and (8) as initial conditions. For small 
r, the function PL (a)  is convex downwards with a unique 
minimum at aEi,5116 and has two zeros at a-as~ and 
a=as l ,  which correspond to short-ranged fixed points 

with a Gaussian tail; see (7). Such a convex downwards 
piece of p~ ( a )  persists to larger values of T. However, as 
r is increased, the function p ~ = p ~ ( a )  develops more 
structure. 

First, at a certain value rÃ‘r2 it exhibits a point of 
inflection with zero slope at a=a~2  with a ~ 2  < as!; see 
Fig. 1. This point of inflection bifurcates, for r >  T), into 
an additional minimum and maximum of pL(a) at 
OÃ‘OE and Â¡'Â£ The new minimum at crÃ‘crE moves 
down with increasing T and starts to intersect the cr axis at 
r = T S ~  > r2; compare Table I. As T is increased even fur- 
ther, another point of inflection with zero slope appears 
for T-r3, which lies between the minimum and the max- 
imum of the previous bifurcation. This inflection point 
develops into another pair of extrema of p ~ ( a )  which are 
located at cr -aE3 and 0 ~ 3 ;  see Fig. 2. 

Now, consider the eigenperturbations, f ~ ( y ) ,  at the 
fixed points U* (y governed by 

for the HC case and by 

afI a u *  afI a2fA 
2 - ~ ~ + ~ = 0  (10) [r-$A+~v - a, ay ay 

for the SC case. For the HC case, fA behaves as5 
fi- l / y r v C  for small y and as 

for large y. For the SC case, we find f ~ ( y )  = 1 
- (r-Voy2/6 for small y and the same asymptotic be- 
havior as in (1 1) for large y. 

Relevant perturbations with a power-law tail c / ~ ~ ~ ' ~  
would dominate the tail of U*.5 Therefore, we use the 
boundary condition C =C(V{,a) -0 both for the HC and 
for the SC case. This condition selects a discrete but 
infinite set of short-ranged eigenperturbations. For 

FIG. 1. Functional form of n(o-1 (dashed curve) and of the 
eigenvalues \,(.a) for r-ri as obtained from the HC scheme. 
At o Ã ‘ O ~ 2  pi(o) exhibits a point of inflection with zero slope 
and k2(0') touches the o- axis. 
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TABLE I. Numerical results for the cha?acEistic T values rz, rsi, 73, andrsi,and for the critical ex- 
ponent y-&(crsi) as obtained from the hard-cutoff - (HC) - and - -- the soft-cutoff -- - (SC) scheme. 

-- - 

T T-rz y T Ã ‘ T s  !Y 7 y T-73 y TÃ‘7s y T y 
- 
- - - -- - --- 

HC 2 1.06 4.175 0.71 4.797 0.66 5 0.65 6.615 0.58 7.342 0.52 8 0.49 
SC 2 1.12 4.077 0.69 4.491 0.66 5 0.62 6.113 0.56 6.613 0.53 8 0.48 

a > a, all of these perturbations are irre1evant.A~ c i  is 
decreased, a relevant perturbation with eigenvalue X I  > 0 
first appears at a = m ,  i.e., at the minimum of p ~ ( a ) .  
For T < ~ 2 ,  no other short-ranged perturbation is relevant 
for any value of a. For T = T ~ ,  the second short-ranged 
perturbation with eigenvalue A,;-̂ .;(a) touches the a axis 
at a-a~2; see Fig. 1. For T > ~ 2 ,  k2 becomes relevant in 
the intermediate a regime GET < a < aE2. For T-13, a 
third eigenvalue, h = h ( a )  touches the a axis and be- 
comes relevant for T > ~ 3 ;  see Fig. 2. Since there is an 
infinite sequence of short-ranged eigenperturbations, this 
type of bifurcation will go on indefinitely as T is increased 
towards infinity. 

The generic structure of the RG flow for T S ~  < T < ~3 is 
displayed in Fig. 3. The parameter PL governs the 
power-law tail of the direct interaction while jAe cqprdi- 
nates pi and p2 represent the two short-ranged perturba- 
tions with eigenvalues Ki and X2. This three-dimensional 
(3D) parameter space contains a 2D separatrix between 
bound and unbound states (see Fig. 3) with a line of tri- 
critical transitions which separates a (shaded) region of 
first-order transitions from an (unshaded) region of 
second-order transitions. 

The RG flow within the 3D parameter space is confined 
to planes of constant p ~ ;  see Fig. 3. For PL#O, this flow 
describes the renormalization of those direct interactions, 
V(z), which decay as V(z - l/zr for large separation z. 
For PL -0, on the other hand, the RG flow governs all 
sufficiently short-ranged interactions with V(z) << l/zr for 
large z. The latter interactions form the strong- 
fluctuation (SFL) regime.'' Inspection of Fig. 3 shows 

FIG. 2. Functional form of p ~ ( a )  (dashed curve) and of the 
eigenvalues $(a) for r-8 (HC scheme). Note that the extre- 
ma of pita) correspond to zeros of the eigenvalues. 

that the plane defined by p~ -0 has four intersections with 
the line of fixed points. Thus, the SFL regime is governed, 
for T S ~  < T < TS~,  by four short-ranged fixed points with 
PL -0; compare Eq. (7). 20 

The numerical results of the two RGs are compared in 
Table I. The exponent y-y(asl) =[/311(asl) as dis- 
played in Table I belongs to the short-ranged fixed point 
U* (y 1 as 1) for critical unbinding within the SFL regime. 
It is interesting to note that y(as\) decreases monotoni- 
cally as a function of T; see Table I. On the other hand, 
~ y ( a ~ 1 )  increases monotonically with T which implies the 
specific-heat exponent a -2 - ry(as1 1 zs 0 for T 2 2. 
The usual Harris criterion then indicates that frozen dis- 
order within the direct interaction V(z) is irrelevant and 
does not affect the critical behavior for a = asl. However, 

- - - - - - -- - - - 

thisis ng generally valid for a < as1 since a approaches 
the limiting value a = 1 for small values of a. 

In the absence of an external pressure, real membranes 
are bound by attractive van der Waals forces. The corre- 
sponding direct interaction decays as - l/z4 for large sep- 
a r a t i o n ~  and thus belongs to the SFL regime both for 
fluid membranes with 7-2 and for polymerized mem- 

FIG. 3. Fixed-point structure and RG flow for TSZ < T < 73. 

The line of fixed points (solid curve) governs (i) unbound states, 
and (ii) the separatrix for unbinding transitions. The separatrix 
contains a line of tricritical points which separates a shaded re- 
gion of first-order transitions from an unshaded region of 
second-order critical transitions. 

- - - - - - - 

- 
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branes with ~ ~ 3 . 3 .  If these T values satisfy T < -2, all 
unbinding transitions are governed by the short-ranged 
fixed point U* (y \ cr=as\) and, thus, must be of second- 
order. 

I t  follows from Table I that the two RG's lead to 
~ ~ 2 ~ 4 . 6  Â 0.2. A more conservative estimate is obtained 
when the approximate y values for T-2 are compared 
with the presumably exact value y a 1. Then, the HC and 
SC scheme lead to TSI ""4.8 k 0.3 and 7 . ~ 2  -4.5 k 0.4, re- 
spectively. All estimates are thus consistent with the 
bound T S ~  2 4, and we conclude that both fluid and poly- 
merized membranes always unbind in a continuous way 
(within the S F L  regime). 

As mentioned, membranes with lateral tension are mar- 
ginally rough and then governed by r=oo which obviously 
is larger than ~ ~ 7 . ~ 2 .  Therefore, such membranes could 
undergo first-order transitions even in the SFL regime. In 
fact, the van der Waals attraction now belongs to the 
weak-fluctuation regime which exhibits first-order transi- 
tions as follows from a superposition of the direct interac- 
tion V(z) and the fluctuation-induced interaction Vfi(z) 
-exp( -z/zo). lo 

Finally, let us assume that the membranes experience 
an interaction V(z) which exhibits two minima a t  two 
finite values of z. Such a situation can be described by 
V(Z) = H(Z -zo)+c2(z -zoI2+c4(z -zoI4 for small 

z -ZQ. Within mean-field theory, this interaction implies 
first-order transitions between two different bound states 
for H-0 and c2-T-Tc <0, and a critical point at 
CZ-T - TcmO. Close to Tc, the mean separation (z) 
behaves as (z) -zo- (Tc - T ) ~  with the mean-field ex- 
ponent p - ?. 

Membrane fluctuations affect the critical behavior just 
described. In the presence of lateral tension, these fluc- 
tuations are governed by an elastic term - (Vz 2, and one 
is led to study a model which is in the same universality 
class as the 2D Ising model. This implies a downward 
shift of Tc and the nonclassical value /3 = k. For tension- 
less membranes, the fluctuation effects are even more pro- 
nounced but a Peierls-type argument indicates that Tc is 
still finite which implies the bound /? S k . 
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