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We theoretically study (i) a large membrane segment and (ii) a closed membrane surface or vesicle that 
adhere to another surface. The membrane segment can undergo unbinding transitions as a result of 
thermally excited shape fluctuations. These transitions are studied by renormalization group methods 
and by Monte Carlo simulations. The shape of a bound vesicle is determined by the interplay of bending 
and adhesion energies. This interplay leads to adhesion transitions from a free to a bound vesicle state 
even in the absence of shape fluctuations. Our theory helps to clarify the notion of a contact angle for 
membranes. 

I. Introduction 

Adhesion of membranes plays an essential role for many 
biological, biochemical, and biophysical phenomena. For 
example, the formation of tissue is based upon the mutual 
adhesion of cell membranes or on the adhesion of these 
membranes to a network of macromolecules. On a 
somewhat smaller scale, many transport processes involve 
the binding and unbinding of vesicles to and from the 
membrane surfaces of cells and organelles. This latter 
process can be used for the delivery of drugs to specific 
cell types. Another example is the construction of bio- 
sensors, which is often based on the binding of membranes 
to solid surfaces. 

In this paper, we discuss recent theoretical work on the 
adhesion of membranes. First, we briefly review the elastic 
properties of fluid and polymerized (or tethered) mem- 
branes in section 11. Then, we consider two relatively 
simple adhesion problems: (i) The adhesion of a large 
membrane segment to another surface is studied in section 
111. The shape of the membrane is not fixed but undergoes 
thermally excited shape fluctuations that act to renor- 
malize the direct interaction between the surfaces.1 This 
renormalization can lead to unbinding transitions from 
bound to unbound states of the membrane.2s3 (ii) The 
adhesion of a closed membrane surface or vesicle to 
another surface is considered in section IV. The shape of 
such a vesicle is determined by the interplay of adhesion 
and bending energie~.~ In contrast to the usual wisdom, 
we find that the notion of a contact angle is not valid in 
general. Furthermore, the vesicle may unbind from the 
wall even in the absence of shape fluctuations. 

11. Fluid and Polymerized Model Membranes 

The lateral extension of lipid bilayers is typically of the 
order of 1-10 pm while their molecular thickness is 2 4  
nm. Therefore, sucha membrane represents a nearly two- 
dimensionalsheet of molecules. In aqueous solution, such 
bilayers form closed surfaces or vesicles, the shape of which 
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has been studied in many  experiment^.^ These studies 
support the theoretical concept that the average shape of 
membranes is controlled by bending rigidity? Likewise, 
typical shape fluctuations of membranes represent ther- 
mally excited bending modes. 

The bending modes of a single membrane can be 
described by a variable, z(x), which measures the local 
distance of the membrane from a reference plane. The 
associated bending energy depends on the internal struc- 
ture of the membrane. From a theoretical point of view, 
two model membranes can be distinguished: (i) fluid and 
(ii) polymerized or tethered membranes. 

For a fluid membrane, the bending energy per unit area 
is given by ( K / ~ ) ( V ~ Z ) ~  where K is the bending rigidity and 
V% is the leading term of the mean curvature. This form 
is valid for wavenumbers q S 1/fc where the length scale 
fc, - a exp[2 r~ / r ]  represents the persistence length of 
the membrane a t  temperature T (which is measured in 
units of the Boltzmann constant fee)." On length scales 
large compared to tp, the membrane is expected to crumple 
and thus to lose its orientational order.8 

For usual lipid bilayers in the fluid (La) phase, the 
persistence length fc, is expected to be very large. For 
example, the (bare) bending rigidity of lecithin is believed 
to be K = 10-l9 J, which implies K I T  = 20 and {,,/a = loM 
a t  room temperature. Even if K were only =10-20 J as 
might be appropriate for DGDG membranes? tP/a would 
still be =lo5 and, thus, Ep would still be larger than the 
size of large vesicles. Therefore, for lipid bilayers a t  room 
temperature, the accessible scales are usually much smaller 
than the persistence length. The same situation presum- 
ably applies to many biological membranes.lO 

Lipid bilayers often exhibit a crystalline (La) phase in 
which the molecules form a triangular lattice and cannot 
diffuse freely. Free diffusion is also suppressed in poly- 
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merized membranes in which the lipid molecules are cross- 
linked by chemical bonds.ll In this case, the strain tensor 
of the membrane contains a term that cou~les the 
membrane displacement, z ,  to the internal displacement 
fields.12 This leads to an effectivescale-denendent rieiditv. 
~ ~ f f ( q )  - K/qq for small wavenumbers, i, with q 5 0.~3' 
Computer simulations of tethered networks gave the 
estimate q = 0.74, which would imply that the shear 
modulus vanishes on large scales.14 More recently. Monte 
Carlo simulations of solidlike elastic sheets = 1 for 
polymerized membranes, which is consistent with a finite 
shear modulus on large scales.16 

For a flat crystalline membrane, a single dislocation has 
a stretching energy that diverges logarithmically with the 
membrane size. This energy is reduced if the membrane 
is allowed to buckle. In fact, recent calculations indicate 
that, for a buckled membrane, the energy of such a 
dislocation might be finite.lSb Dislocations would then be 
thermally activated and the membrane would break up 

- into crystalline domains with a characteristic size, Sc. This 
length scale is set by the mean separation of the dislo- 
cations; for lipid bilayers at room temperature, it is 
expected to be fc tt lOOa. On scales large compared to fc, 
the membrane could represent a hexatic phase, which is 
characterized by a finite bending rigidity and thus by q 
= 0.13a,c 

111. Renormalized Interaction and Unbinding 
Transition 

The direct interaction, Vm(l), between two planar 
membranes can be determined experimentally when the 
membranes are immobilized on molecular smooth mica 
surfaces. The force between two such surfaces can then 
be measured quite accurately as a function of the surface 
separation. For example, rather precise data on the van 
der Waals attraction between two immobilized bilayers 
has been obtained in this way.l6 

In solution, bilayers do not stay planar, however, but 
undergo shape fluctuations. From a theoretical point of 
view, this represents a challenging problem since it involves 
many length scales. Indeed, the smallest waveleneth of 
the membrane fluctuations is set by the size, a - 1 nm, 
of the amvhivhilic molecules while their lareest waveleneth 
is of the  order of the membrane dimension, which is 
typically - 1-10 urn. Thus, the fluctuations are composed 
of many bending modes with wavenumber 1/L S q Â l /a.  

These fluctuations renormalize the direct interaction, 
VD1, in a nontrivial way.l-3J7 The renormalized interaction 
may be attractive or repulsive at large membrane sepa- 
ration corresponding to a bound or an unbound state of 
the membranes. These two different states are separated 
by a phase boundary at which the membranes undergo an 
unbinding transition. Such transitionswere first predicted 
theoretically on the basis of renormalization group (RG) 
calculations both for fluid2J7 and for polymerized (or 
tethered or cry~talline)~ membranes. For fluid mem- 
branes, the existence of these transitions has been con- 
firmed by computer simulations3 and by experiments on 
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(14) See, e.g., Leibler, S.; Magga, A. Phys. Rev. Lett. 1989,63, 406. 
(15) Lipowsky, R.; Giraidet, M. Phys. Rev. Lett. 1990, 65, 2893. 
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DGDG  membrane^.^ Very similar transitions also occur 
when a crumpled membrane is adsorbed onto a wall.18 

A.  heo ore tical Models for the Conformations of 
Interacting Membranes. Now. consider two membrane 
segments with effective bending rigidities, KI - K1/p and 
~2 = &/q\ which are, on average, parallel. The effective 
Hamiltonian for their local separation, l(x), or its Fourier 
transform, 7(q), is taken to be2 

with the reduced rigidity K = KIK-s/(Kl + K2) and the 
membrane interaction 

V(1) = a for 15 0 
= Pl + VD1(l) for 1 > 0 (3.2) 

The membranes are assumed to be in thermal equilibri- 
um at temperature T: the statistical weieht for a certain 
conformation, l(x), is then given by the ~oltzmann factor, 
exd-%MI 7 l .  The same model a l soa~~l ies  toa membrane 
interacting with a solid surface or any other interface if 
one considers the limit K2 -* a. 

The first term in the effective Hamiltonian (3.1) 
represents the 1-dependent part of the bending energies. 
For fluid membranes, one has q = 0, while q > 0 for 
crystalline or polymerized membranes, as mentioned. The 
membrane interaction, V(l), contains a hard wall a t  1 = 0 
since the membranes cannot penetrate one another. For 
positive values of 1, this interaction represents the free 
energy increase resulting (i) from an external pressure, P, 
and (ii) from the direct interaction, VDI, of the membranes, 
which reflects the nature of the underlying molecular 
forces. In general, this direct interaction includes (i) 
'nonspecific" interactions such as hydration, van der 
Waals, or electrostatic forces and (ii) "specific" interactions, 
which are mediated by biologically relevant macromole- 
cules. 

B. Renormalization Group Approach. As men- 
tioned, the direct interaction is renormalized by thermally 
excited shape fluctuations of the membranes. This renor- 
malization can be theoretically studied by a functional 
renormalization group (RG) approach which has been 
previously described in some detai1.l Thus, we will only 
give a brief summary here. First of all, the RG calculations 
predict that lipid bilayers interacting with realistic in- 
termembrane forces can undergo such a transition at  a 
critical unbinding temperature, T = Tu. Alternatively, 
one may vary any parameter of the interaction such as, 
e.g., the Hamaker constant as discussed below. Then, the 
unbinding transition will occur at a critical value of this 
parameter. 

In order to be more specific, let us consider lipid bi- 
layers in water and assume that (i) the bilayers carry no 
electric charge and (ii) there are no macromolecules 
attached to them. Then, the direct interaction consists 
of two parts. (a) a strong short-ranged repulsion termed 
hydration interaction, which presumably arises from the 
local ordering of the water molecules close to the polar 
head groups of the lipids, and (b) a longer-ranged van der 
Wads attraction resulting from the polarizabilities of the 
water and lipid molecules. For two identical membranes, 
the van der Wads term is always attractive and favors a 
small value of the membrane separation (; the hydration 
term, on the other hand, is usually repulsive and favors 
a large value of 1. The direct interaction is then given byLs 

(18) Lipowsky, R.; Baumgartner, A. Phys. Rev. A: Gen. Phys. 1989, 
40, 2078. 
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VDIÃ‡ = BH exp(-l/lH) - (W/12~)[1/(P + 12) - 

2/(1 + 1J + l / ( l  + 21M)2] (3.3) 

Typical values for the empirical hydration interaction are 
BH = 0.2 J/m2 and K 0.3 nm. The Hamaker constant, 
W. of the van der Waals interaction is positive for two 
identical membranes but could be positive or negative for 
a membrane interacting with another interface: this 
constant is typically of order 10-^10-21 J. The length 
scale lo is a microscopic cutoff which ensures that there 
is no divergence at small 1, and lm = 4 nm denotes the 
membrane thickness. 

Functional renormalization of this interaction leads to 
critical values, Wu, for the Hamaker constant that are well 
within the experimentally accessible range. For example, 
two fluid membranes at room temperature T = To = 4.114 
X J with bending rigidities KI = KZ = 2K = 10To are 
predicted to unbind at the critical value Wu = To of the 
Hamaker constant.17 

Another important prediction of the RG work is that 
these transitions should be continuous and characterized 
by universal critical b e h a ~ i o r . ~ J " ~ ~  For example, the mean 
separation, ( I ) ,  of the membranes grows as 

as the unbinding temperature, Tu, or the critical Hamaker 
constant, Wu, are approached. The critical exponent $ is 
independent of the parameters of the direct interaction; 
it only depends on the internal structure of the mem- 
branes: the RG approach leads to the presumably exact 
value $ = 1 for fluid membranes2 and to the estimate \t 
"a 0.7 < 1 for polymerized membranes.2-21 

For T 2 Tu, the unbound membranes are scale- 
invariant: on average, their conformation does not change 
under the rescaling transformation1 

with arbitrary rescaling factor b > 1 and roughness 
exponent f = (2 - 1)/2. For T < Tu, this scale-invariance 
is broken on x scales of the order of the longitudinal 
correlation length, ti ,  which satisfies the relation (1) - 
L S . ^  
38, - 

C. Monte Carlo Studies of Fluid Membranes. 
Renormalization group methods are expected to give 
reliable values for the critical exponents of the unbinding 
transitions. On the other hand, it is difficult to assess the 
accuracy of this approach for the unbinding temperature, 
Tu, or for the critical Hamaker constant, Wu. In order to 
get more reliable estimates for these latter quantities, 
Monte Carlo (MC) studies of the effective Hamiltonian 
(3.1) have been performed for fluid membranes (i.e., for q 
= O).3 These numerical studies show that the RG 
predictions give the right order of magnitude for Tu or 
Wu. In addition, the simulations reveal a rather strong 
dependence of Tu on the small-distance cutoff, a, and thus 
on the molecular structure of the membrane. 

In the MC work, the spatial coordinate, x, is replaced 
by a square lattice with lattice sites, {xi), thelattice constant, 

(19) See, e.g., Parsegian, V. A.; Fuller, N.; Rand, R. P. Proc. Nail. 
Acad. Sci. USA 1979, 76, 2750. 

(20) Grotehans. S.; Lipowsky. R. Phys. Rev. A: Gen. Phys. 1990.41, 
4574. 

(21) This value has been obtained in ref 2 from functional renonnal- 
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(22) If fluid membranes have a finite persistence length f even in the 
presence of self-avoidance, they will exhibit a different sch?& behavior 
for x >> f p .  For example, if they resemble branched polymers on large 
scales, the radius of gyration for a segment of linear size Lin would scale 
as Lin* with v % 1 in three dimensions. 
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w 
Figure 1. Unbinding transition for the square well interaction 
as defined by (3.7). The symbols 0, X, and + represent MC data 
for the inverse length scales l/&, l/&, and 111, respectively. 

a. The membrane configuration is then specified by li = 
l(xi), and the effective Hamiltonian becomes 

with the discrete Laplacian Vd2!; = l(xi + a21) + l(xi - a&i) 
+ l(xi + 0x2) + l(xi - a&) - 41(xi). It is convenient to use 
the dimensionless variables zi = ( K /  D1J21i/a and U(zJ = 
a V [ ( T / W a z i ] / T  in order to reduce the number of 
parameters in the effective Hamiltonian. 

First, consider the square well interaction defined by 

V(l) = m for 1 < 0 
=-W f o r O < l < l o  
= 0 for lo < 1 (3.7) 

which has been studied in great detail.3 In this case, the 
rescaled potential, U(z), depends only on the two param- 
eters zo = (K/  T)1/210/a and w = a2W/T. For each value of 
zo, one may locate a critical value, wu = wu(zo), of the re- 
scaled potential ~trength.~ In practice, agood estimate of 
wu can be obtained from the w-dependence of the 
dimensionless length scales 

and 

Note that ill is a length scale measured in units of the 
lattice constant, a, while the length scales ? and ti are 
measured in units of the hydration length, which is taken 
to be <H = 0.3 nm. The w-dependence of the inverse 
quantities 112, and 1/fn is shown in Figure 1 for ZQ 

= 0.075. 
The realistic interaction as given by (3.3), which 

represents the superposition of hydration and van der 
Wads interaction, has also been studied by MC simulations 
for some values of the interaction parameters.23 In this 
case, the rescaled potential, U(z), depends on five dimen- 
sionless parameters. In order toexplore apart of the phase 
diagram that is experimentally accessible, the following 
parameter values have been chosen: BH = 0.2 J/m2, 114 = 
0.3 nm, lo = lH, IM = 4 nm, a = ;M, and T = To = 4.114 X 

J. Then, the critical value, Wu, has been estimated 
for several values of K. 

An example is shown in Figure 2 for KI = 2K = 2To. In 
this figure, the inverse length scales l / E L  and l/& have 
been plotted as a function of the dimensionless parameter 
w = W~/12irP with T = To and K = To. In this case, the 
critical value is estimated to be wu = 0.088 * 0.007 or Wu 
= (13.6 Â 1.0) X J. In the same way, the critical 

(23) Lioowskv. R.: Zielinska. B.. unoublished. 
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w 
Figure 2. Unbinding transition for the realistic interaction as 
given by (3.3). The upper and the lower curve represent MC 
data for 1/tL and 1/2t1, respectively. 

values Wu = (3.0 Â 0.5) X lo-" J and Wu = (1.5 Â 1.0) X 
J have been found for KI = 0.2 - 10-l9 J and KI = 0.4 

X 10-l9 J, respecti~ely.~~ These values apply to the choice 
a = l M  = 4 nm for the small-distance cutoff. As mentioned, 
a change in this cutoff has a rather strong effect on these 
critical values: the data on the square well potential (3.7) 
indicate that Tu or Wu vary linearly with a.3 Therefore, 
the phase boundaries for the unbinding transition will be 
strongly affected by defects, impurities, or other changes 
in the molecular structure of the membranes. Likewise, 
the microroughness proposed by HelfrichZ4 would have a 
strong effect on Tu. 

D. Relevance of Lateral Tension. So far, it has been 
assumed that the membranes experience no lateral tension, 
2. Now, assume that the two membranes feel a tension, 
21 and 22, respectively. Then, the effective Hamiltonian 
becomes 

with 2 = 2122/(21 + 2;). It is now assumed that, for 2 
= 0, the effective Hamiltonian Ãˆ{l contains a direct 
interaction as in (3.3) which leads to an unbinding 
transition at T = Tu. Thus, for 2 = 0, the membranes are 
bound and unbound for T < Tuand for T >  Tu, respectively. 
Then, a finite lateral tension, 2 > 0, will lead to a bound 
state at any T < - and thus will suppress the unbinding 
transition. Indeed, the effective Hamiltonian f t 2 { 1 )  
with a direct interaction as in (3.3) will always lead to a 
bound state unless the Hamaker constant W is decreased 
to zero.26 

On the other hand, one may now ask what happens in 
the limit 2 -> 0. Then, the membranes attain a finite 
separation for T < T,, but continuouslv unbind for T 2 
T;. Resealing the 2 term in the effective Hamiltonian 
(3.10) according to (3.5), one obtains the transformation 

Then, standard scaling arguments imply that the longi- 
tudinal correlation length, fll ,  and the mean separation, 1 ,  
behave as 

[, - 2-112r and ( 1 )  - @ - 2-'12 (3.12) 

for T 2 Tu as 2 goes to zero. Likewise, the adhesion free 
energy, fa, has a singular part which scales as fa - -TI!;$ - -S1/r. For fluid membranes, the scaling behavior for 
1 and fa has been previously obtained by different 
argument~.~6 

(24) Helfrich, W. Liq. Cryst., in press. 
(25) This follows from results for wetting transitions, see Lipowsky, 

R. Phys. Rev. Lett. 1984,52,1429. 
(26) Helfrich, W.; Servuss, R. M. Nuouo Cimento D 1984. 3, 137. 

E. Irrelevance of Quenched Disorder. Another type 
of perturbation that could affect the unbinding behavior 
is the presence of frozen or quenched disorder. For 
example, the direct interaction between a fluid or polym- 
erized membrane and a solid surface may contain a random 
part resulting from defects or impurities at  the surface. 
Then the strength, W, of the attractive part of the direct 
interaction, VDI, will be a (quenched) random variable, 
which may be characterized by the expectation value ( W) 
= WO, and its variance ( \W - ( W)12) = (AW);. 

close to an unbinding transition, the membrane consists 
of correlated segments that have a linear extension -&I. 
Then, alludingto the central limit theorem, the to& 
adhesion energy for such a segment has a mean value - W&2 and a standard deviation -A W 61. Therefore, 
the unbinding temperature Tu(W of a segment is of 
order Tu(Wo) Â AW/tll and thus exhibits fluctuations of 
order ATu = AW/.&. 

Now, one must ask if these fluctuations in Tu change 
the critical behavior at the transition. Thus, let us first 
assume that these fluctuations are irrelevant. The un- 
binding transition will then occur at  Tu = Tu(Wa) with the 
same critical exponents as in the absence of disorder. Such 
an assumption is only consistent if the fluctuations, ATu, 
of the unbinding temperature are small compared to the 
temperature deviation, i.e., if ATu << Tu(Wo) - T as the 
transition temperature is approached from below. In such 
a situation, the correlation length fIl  would diverge as - [Tu(Wo) - !f-'~, and the fluctuations in the unbinding 
temperature would vanish as ATu - [Tu(Wo) - TIT Thus, 
the assumption of irrelevant disorder is only self-consistent 
provided 

For fluid membranes, one has uil = 1 and thus a marginal 
case according to (3.13). Then, the critical behavior will 
presumably exhibit confluent logarithmic singularities 
while the critical exponents are expected to remain 
unchanged. For polymerized membranes, the RG calcu- 
lations lead to the estimate ull = 1.3 > l.2-21 The criterion 
(3.13) then leads to the conclusion that, to leading order. 
quenched disorder does not affect the critical behavior a t  
continuous unbinding  transition^.^^ 

IV. Adhesion of Vesicles 
In the previous section, we considered the behavior of 

a membrane segment bound to another surface (which 
could be a second membrane). So far, we did not worry 
about the edges of such a segment. In aqueous solution, 
the edge of a lipid bilayer has a finite edge tension (or edge 
free energy) per unit length arising from the contact 
between the water and the hydrocarbon chains. Therefore, 
a sufficiently large membrane segment in solution will 
form a closed surface or vesicle in order to avoid this 
tension.28 

The average shape of vesicles has been studied in many 
experiments, primarily by light microscopy.6 In addition 
to the average shape, these experiments also give direct 
evidence for thermally excited shape  fluctuation^.^^ Ves- 
icles frequently interact with other membranes or inter- 

(27) For direct interactions that exhibit several minima, the surfaces 
can undergo multicritical unbinding transitions at which quenched 
disorder should change the critical behavior; see ref 20. 

(28) For a bound membrane segment, the total adhesion energy scales 
like the area of the membrane and thus will always overcome the edge 
tension for sufficiently large segments. 

(29) For a review, see i3ackmann.E.; Duwe, H. P.; Engelhardt, H. Fara- 
day Discuss. Chern. Soc. 1986.81. 281. 
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faces. If this interaction is attractive, it can lead toa bound 
state of the vesicle. Such bound states can be experi- 
mentally investigated by micropipet  technique^.^^ In this 
latter case, one studies the adhesion of two vesicles, one 
of which is sucked into a micropipet. 

From a theoretical point of view, the shape of a bound 
vesicle is determined by the interplay of adhesion and 
bending energies. This interplay can be systematically 
studied within a simple model as will be described below.4 
Within this model, we obtain a large variety of different 
shapes. A few examples are shown in Figure 3 and Figure 
5 below. In addition, we find nontrivial adhesion tran- 
sitions between free and bound vesicles as well as tran- 
sitions between two different bound states, which occur, 
e.g., when the temperature or the osmotic conditions are 
changed. Finally, our theory helps to clarify the notion 
of a contact angle for membranes. 

A. Bound States of Vesicles. Now, consider a 
membrane that forms a closed surface with total surface 
area, A, and enclosed volume, V. The membrane is 
attracted to a wall by a contact potential, W, which 
represents an adhesion energy per unit area. The free 
energy functional of such a vesicle is then given by4 

The first term represents the surface integral over the 
bending energy of the membrane where Cl and Ci are the 
two principal curvatures.= The spontaneous cuwature Co 
is a phenomenological parameter that reflects a possible 
asymmetry of the inner and outer monolayer. For charged 
membranes, Co may be changed by adding salt to the 
interior or exterior water medium. We do not include any 
energy related to the stretching of the membrane. Thus, 
we assume that the membrane is fluid. In addition, we 
also assume that the vesicle does not change its topology 
and, thus, does not include the Gaussian curvature. 

The second term, -WA*, in (4.1) represents the adhesion 
free energy. We are mainly interested in the global shape 
of a bound vesicle with a typical size of the order of 
micrometers and, thus, neglect spatial variations on the 
scale of nanometers, which is the typical range of inter- 
action potentials. Thus we have replaced this microscopic 
potential by a contact potential of strength W. The gain 
in energy for a bound vesicle state is then proportional to 
the contact area. A*. 

The last two terms in (4.1) refer to the external 
constraints imposed on the total surface area, A, and on 
the total volume, V, of the vesicle. In some experiments, 
the osmotic conditions are not changed while the area of 
the vesicle is increased, e.g., by raising the temperature. 
This defines the (V,A) ensemble for which Pand 2 denote 
Lagrange multipliers. On the other hand, if the pressure 
is experimentally controlled, e.g., by the osmotic condi- 
tions, one has to include an additional free enerw chance 
P dV, wherepdenotes the difference between theexterior 
and interior pressure: P= Pet -Pin+. This latter situation - - . ... - 
defines the (P,A) ensemble. 

For W = 0, i.e., without the adhesion term, the theoretical 
model as defined by (4.1) has been studied in some 
detail.6*31-% If one assumes that the shape is axisymmet- 
ric, this shape can be uniquely parameterized by the angle, 

(30) For a review, see Evans, E. Colloids Surf. 1990,43, 327. 
(31) Deuling, H. J.; Helfrich, W. J. Phys. 1976.37, 1335. 
(32) Jenkins, J. T. J. Math. Bid.  1977, 4, 149. 
(33) Peterson, M. A. J. Appl. Phys. 1986,57, 1739. 
(34) Seifert, U.; Bemdl, K.; Lipowsky, R. Phys. Rev. A, in press. 

Figure 3. Contours for two axisymmetric shapes which are bound 
to another surface. The contour is parametrized by the angle <' 
as a function of the arclength s. The contact point is at s = a*. 

q = 'I'(s), which determines the orientation of the surface 
normal as a function of the arclength, s, along the contour; 
comapre Figure 3. One then has to solve a set of ordinary 
but nonlinear differential shape equations, which are 
obtained by minimization of the free energy (4.1). This 
leads to several branches of one-parameter families of 
solutions. Branches of lowest energy are (i) prolate 
ellipsoids, (ii) oblate ellipsoids that transform smoothly 
todiscocyte-type shapes if the pressure is increased or the 
volume decreased, and (iii) stomatocvte-tme shapes with - - -  
broken ~ ~ / d o w n  symmetry.% 

For bound vesicles, these shape equations remain valid 
since the additional term Fw enters only as a boundary 
condition. Two such conditions have to be imposed along 
the line of contact: (i) since anvsham bent costs an infinite 
amount of bendingenera (inthe absence of defects), the 
membrane must touch the wall taneentiallv. i.e.. the 
contact angle +(s=s*) is identical withr;  (ii) inaddition, 
minimization of (4.1) with a variable contact line leads to 
a nontrivial boundary condition for the contact curvature 
which is given by4 

Thus, the contact potential Wand the bending ridigity K 

completely determine the cuwature a t  s and s*. This 
relation is independent of the size of the vesicle, of the 
spontaneous curvature, and of the pressure. I t  holds in 
any ensemble. 

We have performed a systematic study of the shape 
equations with these boundary  condition^.^ As a result, 
we found a large variety of different shapes. A few 
examples are shown in Figure 3 and Figure 5. 

For bound vesicle shapes which minimize the energy as 
given by (4.1), the boundary condition (4.2) holds as a 
strict equality. A similar but approximate relation given 
by max(Cl) = (2 W / K ) ~ / ~  has been found for the maximum 
curvature, max(Cl), a t  the edge of the contact when the 
membrane is bound by a long-ranged attractive potential 
of strength W.30 

B. Adhesion Transition. From a theoretical point of 
view, the most relevant vesicle states are those of lowest 
energy. For a given set of parameters, the state of lowest 
energy that may be bound or free defines aphase diagram. 
This phase diagram dependson theensemble: in the (PA) 
ensemble, one has to determine the minimum of F, + Fw 
+ FP, while in the (V.A) ensemble onlv F. + F w  are 
minimized. The (P;A) ensemble has been discussed 
el~ewhere.~ Here, we will focus on the (V.A) ensemble 
with zero spontaneous cuwature, i.e., w i t h ~ b  = 0. 

Because of the scale invariance of the free energy (4.1), 
i t  is convenient to introduce the dimensionless quantities 

w = W R ~ K  and u = v/((4/3)rR3) (4.3) 
with R = (A/4r)'I2. The corresponding phase diagram is 
shown in Fieure4. This phasediaeram is basically divided 
into two by the lines Da", cn2), which 
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Figure 4. Phase diagram for vesicles with enclosed volume, v, 
which are attracted by a contact potential of strength, w. The 
vesicle is free for small wand bound for large w. All vesicles have 
the same surface area. 

define a critical adhesion potential w&). For w > w,(u), 
the state of lowest energy is bound, while for w < wa(u) it 
is free even in the presence of an attractive wall. This free 
state is a prolate ellipsoid for 1 > u 2 ui  =s: 0.65, a discocyte- 
type shape (which branches off from the oblate ellipsoid) 
for vi S u S u; = 0.59, and a stomatocyte-type shape for 
us > u.34 The lines (DaPr, Daob, D,") denote discontinuous 
adhesion transitions between these free states and a bound 
state with finite contact area A*. For u < ug = 0.52, two 
different bound states coexist along the line (D). In fact, 
the two shapes displayed in Figure 3 represent an example 
for this coexistence. The contact area of the bound sto- 
matocyte-type state vanishes continuously for w -* w&) 
from above, i.e. the line (C,") denotes a line of continuous 
adhesion transitions. 

Thus, the phase diagram for the (V,A) ensemble has 
the same basic features as the phase diagram for the (P,A) 
ensemble, which has been displayed in ref 4: A free vesicle 
state for weak contact potential undergoes an adhesion 
transition to a bound vesicle state as the strength of the 
contact potential is increased. This transition is governed 
by the competition between bending and adhesion ener- 
gies. 

The bending energy is scale invariant, i.e. independent 
of the size of the vesicle, while the gain in adhesion energy 
is proportional to the area of the vesicle. Therefore, the 
critical value of the contact potential, W = Wa = wa~/R2, 
is also size-dependent. Thus, for fixed W,  vesicles of linear 
size R > R, = (w,K/ W)lI2 are bound while those of linear 
size R > R, are free. This prediction is based on 
minimization of the free energy functional defined by (4.1). 
Inrealsystems, at leasttwo additional effects will influence 
this transition: (i) since the vesicle has a finite size, 
thermally activated unbinding of vesicles preempts the 
adhesion transition, if the energy difference between bound 
and free states becomes of the order of T; (ii) shape 
fluctuations of the adjacent part of the membrane may 
also lead to an unbinding of vesicles via the mechanism 
described in section 111. A rough estimate of the fluctu- 
ation effects leads to a crossover radius Re =s: 0.2 
large vesicles with R >> Re unbind via thermally excited 
shape fluctuations while smaller vesicles with R << Re 
undergo an adhesion transition as discussed in this section. 

C. Notion of a n  Effective Contact Angle. Within 
the continuum model used here, the contact angle for 
vesicle adhesion is identical with ir as discussed in section 
1V.A and, thus, is not a particularly interesting quantity. 
In fact, it is the contact curvature which is determined by 
the boundary condition (4.2) in a nontrivial way. On the 
other hand, let us now consider the related problem of 
adhesion of a liquid droplet on a solid substrate. In the 

Figure 5. Shape of a bound vesicle with effective contact angle 
Such an angle can be defined provided (i) the interior 

pressure exceeds the exterior pressure, and (ii) the radius of 
curvature, Ew, atthe contact point is much smaller than thelinear 
size of the vesicle. 

Figure 6. Adhesion of a membrane to two parallel surfaces at 
separation D. The shape is parametrized by the angle ^f = Ws) 
with -L/2 5 s 5 L/2.  The contact points are at s = h*. 

latter situation, the contact angle depends on the various 
interfacial tensions and is given by the Young-Dupre 
equation. The basic difference between both phenom- 
ema is the bending elasticity, which is usually unimportant 
for the adhesion of liquid droplets. 

If the bending rigidity K becomes small, sharp bents 
cost only a small energy and one might expect to recover 
the Young-Dupre equation even for vesicle adhesion. This 
is indeed the case in the following sense: For small K (or 
equivalently for large W), the contact curvature C1* = 
(2 W / K ) ~ / ~  becomes large, i.e., the radius of curvature, Rl* 
= (x/2W)lI2, at the contact point becomes small. If this 
length scale is much smaller than the linear size, R, of the 
vesicle, the shape approximates a spherical cap as shown 
in Figure 5. In the (P,A) ensemble, this corresponds to P 
= Pen - Pint < 0, i.e., to an interior pressure that exceeds 
the exterior pressure. For such a shape, one may define 
an effective contact angle, teff ,  which indeed obeys the 
Young-Dupre equation 

w = 2(1 + cos teff)  (4.4) 

For fixed area A, the lateral tension 2 has the numerical 
value of the Lagrange multiplier required for this area. On 
the other hand, this tension can also be related to the 
negative pressure P and to the radius Reff of the spherical 
cap via the Laplace equation P = -22/Reft. 

Finally, let us briefly discuss the adhesion geometry 
shown in Figure 6 which is motivated by the conformations 
of membranes in multilayer systems such as, e.g., in large 
liposomes. The membrane is attracted to two different 
"walls" at separation. D. It  feels a contact potential, W ,  
and, in addition, a lateral tension, 2, acting parallel to the 
walls. For simolicitv, the membrane is taken to bend only 
along one spatial direction so that its shape can be 
parametrized by the angle t = t ( s )  with -L/2 < s < L/2 
as indicated in Figure 6. The free energy, f, per unit length 
is then given by 

f = J'Ĵ ds { ( ~ / 2 ) ( d t / d s ) ~  + 2(1- cos t )  - A sin t] - 

where A is a Lagrange multiplier in order to ensure that 
Jds sin t = D. The boundary conditions at  the contact 
line are again given by t(&s*) = 0 and dt/dslÂ±, = 
T ( ~ W / K ) ~ / ~  = -l/Ri*. 

Minimization of the free energy (4.5) leads to a shape 
equation which can be solved in terms of elliptic functions. 
One then finds that, for Rl* << D, the angle t ( s )  is roughly 
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constant and given by *(s)  = *(0) for the intermediate 
s range -(s* - Ri*) S s S s* - Ri*. The slope * ( O )  then 
satisfies the Young-Dupre equation W = &[l- cos * (0 ) ] ,  
where 20 = 2/cos *(O)  can be regarded as the tension 
acting in the middle of the membrane.36 Therefore, an 
effective contact angle = 'I'(0) can be defined for Ri* 
<< D. On the other hand, for Ri* >> D, the slope 'I'(s) of 
the membrane varies over the whole range -s* < s < s*, 
and it makes no sense to talk about an effective contact 
angle. A similar distinction applies to the adhesion 
geometry discussed by Servuss and Helfrich.36 

In summary, the notion of an effective contact angle for 
vesicle and membrane adhesion is meaningful only if the 

(35) Compared to (4.2), there is an additional minus sign which arises 
from 9 - n- - 9. 
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typical length scale of the adhesion geometry is large 
compared to the scale RI*, which represents the radius of 
curvature at the contact line. This effective contact angle 
obeys an appropriate Young-Dupre equation, which is 
then a consequence of the universal boundary condition 
(4.2) for the contact curvature. 
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