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In the presence of an attractive surface, a vesicle can undergo shape transformations between two 
different free states, between a free and a bound state, and between two different bound states. Adhesion 
can also lead to topological changes such as vesicle rupture and vesicle fusion. The interaction between 
the vesicle membrane and the surface is renormalized by thermally excited shape fluctuations. This 
renormalization leads to unbinding phenomena both for fluid and tor polymerized (or solid-like) 
membranes. 
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I. INTRODUCTION 

The mutual adhesion of membranes such as lipid bilayers can be experimentally 
studied by a variety of methods: (i) For oriented multilayer systems, the separation 
of the membranes can be measured by X-ray diffraction as a function of the external 
pressure1; (ii) For membranes immobilized on mica surfaces, their direct interaction 
can be determined by the surface force apparatus2; (iii) Adhesion of giant unila- 
mellar vesicles can be studied by micropipet aspiration techniques3; and (iv) Ac- 
cidental adhesive contacts of membranes in diluted systems can be observed by 
light micro~copy.~ 

The adhesion energy per unit area, W ,  deduced from these experiments is typ- 
ically of the order of (1017-1015)  J/p.m2 in case (i)-(iii) and of the order of 
(10-20-10-18) J/p.m2 in case (iv). Thus, the experimentally accessible range of 
adhesion energies extends over several decades. 

In this paper, we briefly review recent theoretical work on the adhesion of vesicles 
and membranes. First, we consider the adhesion of vesicles to another surface, not 
necessarily another membrane. Within a simple model, the vesicle is predicted to 
undergo a variety of shape transformations between free and bound states, and 
between different bound  state^,^'^ see Sec. 1I.A. The adhesion process may also 
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induce topological changes of the vesicle such as vesicle rupture, see Sec. II.B, and 
vesicle fusion, see Sec. 1I.C. 

The effective value, W, of the adhesion energy per unit area depends on the 
interplay of direct interactions and thermally excited shape fluctuations of the 
membranes. The latter fluctuations which are discussed in Sec. 1II.A act to  reduce 
the value of W. The resulting unbinding phenomena can be studied by renormal- 
ization group methods,'z8 see Sec. III.B, and by Monte Carlo simulations,9J0 see 
Sec. 1II.C. 

11. ADHESION OF VESICLES 

A. Adhesion by a Contact Potential 

Consider a vesicle which adheres to another membrane or surface. The shape of 
such a vesicle is determined by the interplay of adhesion and bending energies. 
This interplay can be theoretically studied starting from a relatively simple model 
in which the membrane experiences a contact potential arising from the attractive 
surface. 

For a vesicle with total surface area, A,  and enclosed volume, V, this model is 
defined by the free energy functional5 

The first two terms depending on the bending rigidity, K, and on the Gaussian 
curvature modulus, K ,  represent the curvature energies which are expressed in 
terms of the two principal curvatures, C ,  and C2.11 For simplicity, we focus on the 
case of zero spontaneous curvature. 

The third term, - WA *, in (2.1) represents the adhesion free energy of the 
membrane segment adjacent to the surface with contact area A *. The last two 
terms in (2.1) involve the pressure difference P = Pa - P,,, and the lateral tension, 
2. First, we will focus on shape transformations which are fast compared to the 
permeation of water through the membrane. This situation is described by the (V, 
A)-ensemble for which P and S denote Lagrange multipliers. 

For a given set of parameters, the most relevant vesicle state is the ground state, 
i.e., the state of lowest energy. It is convenient to introduce the dimensionless 
parameters w = W R 2 / ~  and v = V/((4/3)irR3), with R = (A14~r)l'~. The corre- 
sponding phase diagram is shown in Figure 1. This phase diagram is divided into 
two parts by the lines ( D r ) ,  (D?),  (Â£>it)  and (Cg) which represent the locus of 
transitions, w = w.,(v), between free and bound states of the vesicle. For w > 
wo(v), the state of lowest energy is bound while, for w < w.,(v), it is free even in 
the presence of an attractive wall. 

The bending energy is scale invariant, i.e., independent of the size of the vesicle, 
while the gain in adhesion energy is proportional to the area of the vesicle. There- 
fore, the critical value of the contact potential, W = W., = w a ~ / R 2 ,  is also size- 
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FIGURE 1 Schematic phase diagram for the shape transformations of a vesicle in the presence of an 
attractive surface. The thick line represents transitions between a free and a bound state, the thin full 
lines between two different free states, and the thin broken line (D) between two different bound 
states. The parameters w and v are the reduced adhesion energy and the reduced volume as defined 
in the text. 

dependent. Thus, for fixed W, vesicles of linear size R > R,, = (W,,K./W)~" are 
bound while those of linear size R < R,, are free. 

For a single vesicle, the linear size R = ( A / ~ T I - ) ~ ~ '  can be varied, to a certain 
extent, by a change in temperature since the thermal expansivity of the membrane 
surface is large compared to that of the enclosed water. This effect has been recently 
used in order to induce shape transformations of free vesicles: a variety of trans- 
formations has been experimentally observed and has been found to be in good 
agreement with theoretical  calculation^.^^ 

For adhering vesicles, similar experiments would be highly valuable. One par- 
ticularly promising method seems to be reflection interference contrast microscopy 
which has already been used for the shape of red blood cells.13 In this way, one 
might be able to observe how a single vesicle unbinds from the surface as the 
temperature is decreased since its linear size shrinks from R > RÃ to R < R,,. In 
Figure 2, two such shape sequences are shown as calculated theoretically. 

Alternatively, let us consider, at fixed temperature, a dispersion of vesicles with 
different values of V and A .  If the vesicles stick to the surface for a long time, 
water can permeate through the membrane and the vesicle can eventually attain 
a state with zero pressure difference. Such 'ripe' vesicles are described by the (P,  
A)-ensemble with P = 0. In this case, vesicles are bound for w = W R'/K > 2 
and free for w ss 2.5 Therefore, the size distribution of the bound vesicles will 
exhibit a lower cutoff at R = R,, = (2 K/W)~". 

B. Vesicle Rupture Induced by Adhesion 

In the limit of strong adhesion, i.e., for large w in Figure 1, the bound vesicle with 
constant volume (or constant pressure difference P s; 0) attains the shape of a 
spherical cap. In this limit, W is related to the lateral tension S via the Young- 
Dupre equation, W = S (1 + cos + e f f ) ,  where +eff denotes an effective contact 
angle.5,6 If the tension S exceeds a cert'ain threshold, Smax, it will disrupt the 
membrane. Thus, very strong adhesion with W 2 Smax will always lead to vesicle 
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FIGURE 2 Shape transformations induced by a change in vesicle area, A ,  while the vesicle volume 
is kept constant. The initial state is a sphere with area A,, and linear size Ro = (A,/47r)"2. (a) Surface 
with W = 1.8 K/R$ The free vesicle becomes weakly prolate, then binds to the surface and finally 
undergoes a transition between two different bound states; and (b) Surface with W = 0.5 K/R?): the 
free vesicle becomes strongly prolate before it binds to the wall but then unbinds again as the area is 
further increased. 

rupture. As a result, the closed vesicle will be transformed into a disk-like mem- 
brane segment with a free edge. This edge is characterized by an edge free energy 
per unit length or edge tension, Se ,  arising from the partial contact between the 
hydrocarbon chains and the water. 

The energy, Efd, of a free planar disk with radius, 2R, is Efd = ~ T T  R Sp.  On 
the other hand, if this disk is bound to the attractive surface, its energy is given 
by 

with the length scale Rbd = Se/W. 
Obviously, the energy of a bound disk is always smaller than the energy of a 

free disk. Thus, the ground state of the membrane segment in the presence of an 
attractive surface can be a bound disk, a free vesicle, or a bound vesicle. We will 
again consider 'ripe' vesicles described by the (P, A)-ensemble with P = 0. 

Free vesicles with P = 0 attain a spherical shape with energy Ety = 4 i r ( 2 ~  + 
K ~ ) . ~ ~  Bound vesicles with P = 0, on the other hand, have energy Ebv = Ebv(R) 
with Ebv(R) < Efv for R > Ry = (2~1W)~". Close to the transformation point with 
w = wa = 2, this energy behaves as Ebv - Efy - - K Aw2 for small Aw = w - 
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For large w, the bound vesicle resembles a flat pancake. In this limit, its energy 
behaves as 

with g = 2.8. 
In general, a comparison of the energies Efy , Ebv(R), and E^(R) leads to several 

regimes which depend on the relative size of the two length scales Ra = 

(2~1W)~"  and RM = Se/W (and on the value of K ) .  On the other hand, for 
sufficiently large vesicles with R >> RM = Se/W, one always enters a bound disk 
regime. As an example, consider phospholipid bilayers with K -= 1 0 1 9  J and Se = 
5 X l o z 0  Jlnm. For relatively strong adhesion with W = 1 0 1 6  J/pm2, one has Ry 
= 0.05 pm and Rm == 0.5 pm; for relatively weak adhesion with W = Jl 
pm2, these two scales are given by Ra = 5 Fm and Rm == 0.5 cm. 

C. Vesicle Fusion Induced by Adhesion 

So far, isolated vesicles or disks have been discussed. Now, let us imagine to increase 
the surface coverage, e.g., by increasing the bulk concentration of the lipid. It will 
then happen that bound vesicles (or disks) come into contact and fuse. 

First, consider the possible fusion of two vesicles. For two free vesicles (with P 
= O), the curvature model predicts that the energy change of fusion is given by14 

Thus, fusion is energetically favorable for K~ > - I K .  Quite generally, adhesion 
acts to increase this energy change. Consider two identical vesicles of equal size, 
R = ( A I ~ T T ) ~ ' ~ ,  which are bound to an attractive surface with W > W,, = ~ K / R ~ .  
Then, the energy change of fusion is given by 

It then follows from (2.3) that 

for large R (or large w )  with g = 2.8 as in (2.3). Thus, in this limit, AÂ£(,, is positive 
irrespective of the sign of K ~ .  Furthermore, a numerical calculation shows that 

> AE,,,,(Ra) = g TT K + ~ T T  K~ > AÂ£,, with g =- 8.3. Therefore, two vesicles 
can fuse in their bound state even if they cannot fuse in their free state because 
Kg < - 2 ~ .  

Fusion of two free vesicles is a thermally activated process which could start with 
the formation of two pores and a passage connecting them. The same mechanism 
is likely to apply to the fusion of two bond vesicles. There are, however, several 
factors which act to enhance the fusion rate: (i) For relatively large surface coverage, 
the probability for two vesicles to come into contact is strongly enhanced; (ii) 
Adhesion increases the lateral tension, S ,  within the membrane. In principle, this 
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reduces the energy for pore formation since a pore of radius L within a planar 
membrane has the energy Epore = ~ T T  L Se - TT L2!,.15 For phospholipid bilayers, 
this reduction is, however, very small for the accessible values of 2;  and (iii) The 
surface may contain impurities or defects which can act as nucleation sites for the 
pore formation. 

If the linear size of the bound vesicles grows by fusion, one will eventually enter 
the bound disk regime. If the edges of two disks come into contact, they will fuse 
immediately since no activation barrier is involved in such a process. Therefore, 
the average disk size for an ensemble of bound disks will steadily increase with 
time. For fixed surface coverage, such an ensemble of disks resembles an ensemble 
of droplets in the 2-dimensional Ising model with a conserved order parameter. In 
the latter situation, the average size of the disks should grow as t1I3 with time t for 
the late stages of the fusion process.16 

Ill. ADHESION AND UNBINDING TRANSITIONS 

The overall shape of a bound vesicle as discussed in the previous section can be 
observed through a light microscope. Now, let us imagine to use a microscope with 
a much larger resolution and let us focus on the region of contact between the 
vesicle and the second surface. Within this contact region, the two surfaces are 
separated by a small water gap and experience a variety of direct interactions arising 
from the intermolecular forces. Quite generally, these direct interactions are re- 
normalized by thermally excited shape fluctuations of the membranes. 

In fact, shape fluctuations with a wavelength of 1 - 10 pm are even visible in 
the light microscope, see, e.g., Reference 13. It is important to realize, however, 
that there are many more length scales involved in the shape fluctuations. Indeed, 
the smallest wavelength of the membrane fluctuations is set by the size of the lipid 
molecules which is of the order of nm's. Thus, the shape fluctuations are composed 
of many modes with wavelengths from the molecular size up to the membrane 
dimension. These fluctuations lead to a certain membrane roughness.17 

A. Shape Fluctuations of Fluid and Polymerized Membranes 

For a rough state, the transverse displacements of the membrane from a reference 
plane can be regarded as an ensemble of humps: a membrane segment of linear 
size L will form a hump of longitudinal and transverse extension, Lll and Ll.  These 
two length scales are related by 

L,, - L and Ll - siLj - siL^ with 0 5 !, Ã‡ 1 (3.1) 

where the amplitude dl has the dimension of (1ength)l-^. This relation is invariant 
under the rescaling transformation given by 
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with arbitrary rescaling factor b,  which expresses the basic scale invariance of the 
shape fluctuations. 

For fluid membranes with bending rigidity K,  one has I, = 1 and dl = a . 1 7  
For polymerized (or solid-like) membranes with shear modulus p. and area com- 
pressibility modulus KA, the roughness exponent satisfies < < 1,'-lX and the am- 
plitude d in (3.1) is given by dl2 = TVK~'--I Y1"- with the Young modulus Y = 4 
p . K A / ( ~  + KA) as follows from general scaling arguments.1Â Computer simulations 
of tethered networks gave the effective exponent < = 0.65 Â 0.04.1921 In contrast, 
our recent Monte Carlo simulations of elastic sheets showed that I, = 1/2.1Â 

B. Renormalization Group Approach to Unbinding Transitions 

As mentioned, the shape fluctuations renormalize the direct interaction and in- 
crease its repulsive part. The renormalized interaction may be attractive or repulsive 
at large membrane separation corresponding to a bound or an unbound state of 
the membranes. These two different states are separated by a phase boundary at 
which the membranes undergo an unbinding or adhesion transition. Such transitions 
were first predicted on the basis of renormalization group (RG) calculations7~x~22; 
their existence has been confirmed by Monte Carlo simulations9J0 and by exper- 
iments with sugarlipid membranes.23 

The RG work implies that two lipid bilayers interacting with realistic intermem- 
brane forces undergo such a transition at a critical unbinding temperature, T = 
Tu. Alternatively, one may vary any parameter of the interaction such as, e.g., the 
Hamaker constant, W, of the van der Waals interaction, see (3.4) below. In general, 
the RG leads to several universality classes or scaling regimes and thus to complex 
critical b e h a ~ i o r . ~ J  However, for sufficiently short-ranged interactions, orie enters 
the strong fluctuation regime for which the unbinding transitions are predicted to 
be continuous and characterized by universal critical exponents. For example, the 
mean separation, (C), of the membrane from the other surface grows as 

(C) - l/(Tu - T)^ - 1/(W - W )  

as the unbinding temperature, Tu, or the critical value, w,,, of the Hamaker constant 
is approached. The critical exponent + is independent of the parameters of the 
direct interaction, and has the presumably exact value + = 1 for fluid membranes, 
and the value $ = 0.69 < 1 for polymerized membranes.' 

A lateral tension, S > 0, acts to suppress continuous unbinding  transition^.^ 
Indeed, such a tension always represents a relevant perturbation at the RG fixed 
points for such t r a n ~ i t i o n s . ~ ~  On the other hand, in the limit of small S ,  the surfaces 
attain a finite separation for T < TU but continuously unbind for T 2 T,,. Scaling 
arguments then show that the mean separation (0 - 1/SlJ2 while the adhesion free 
energy has a singular part - -S1/6 as S goes to zero for T 2 TU.'j For fluid 
membranes with 4 = 1, this behavior has been previously obtained by different 
 argument^.^ 

Another type of perturbation which could affect the unbinding behavior is the 
presence of frozen or quenched disorder. In this case, scaling arguments show that 
this perturbation is irrelevant provided the roughness exponent I, and the unbinding 
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exponent <  ̂ satisfy the relation i, < <^.6'8 For fluid membranes, one has i, = <  ̂ = 

1 and thus a marginal case. Then, the critical behavior will presumably exhibit 
confluent logarithmic singularities in the presence of quenched disorder. For po- 
lymerized membranes with t = 112 and = 0.69, such disorder should be irrel- 
evant .25 

C. Monte Carlo Simulations of Unbinding Phenomena 

The existence of unbinding transitions has been confirmed by Monte Carlo sim- 
u l a t i ~ n s . ~ J ~  An example is shown in Figure 3. In this case, two fluid membranes 
with bending rigidities K, = K; = 0.2 x 1 0 1 9  J have been studied. At separation 
?, these membranes experience the realistic interaction as given by 

The parameter P represents the external pressure, and w is the Hamaker constant 
of the van der Waals forces. For the empirical hydration interaction, the values B 
= 0.2 J/m2 and tH = 0.3 nm have been chosen. Furthermore, we used the cutoff 
scale (n = (.n, and the membrane thickness (,u = 4 nm. 

In Figure 3, the mean separation, (?), of the membranes is shown at room 
temperature as a function of external pressure, P.26 The different sets of Monte 
Carlo data correspond to different values of the Hamaker constant, W .  For com- 
parison, the behavior at zero temperature, i.e., in the absence of shape fluctuations, 
is also included in Figure 3. Extrapolation of these and similar data to zero pressure 

FIGURE 3 Monte Carlo data for the separation of two lipid bilayers plotted versus external pressure. 
The membranes have bending rigidities K = 0.2 x 10-lY J ,  and experience the interaction given by 
(3.4). The three curves on the right with Hamaker constants W = 5, 15, and 25 x J are taken 
at room temperature; the three curves on the left represent the behavior in the absence of shape 
fluctuations. The difference between these two sets of curves shows the strong renormalization of the 
direct interaction by shape fluctuations. 
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gives the critical value W = w,, = 3 x J for the Hamaker constant. Thus, 
attractive van der Waals interactions with 0 < w 5 w,, are unable to bind the 
membranes as the pressure is decreased to zero. 
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