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Appendix. Functional renormalization of interface potentials

In this appendix, we will briefly describe functional renormalization methods as
applied to interface potentials. First, we perform the partial trace in the partition
function over the small–scale fluctuations. One then has to consider a certain expec-
tation value which can be evaluated (i) within a perturbative cumulant expansion,
or (ii) by an approximate but non–perturbative approach, originally developed by
Wilson in the context of bulk critical phenomena. This approach has been previ-
ously reviewed by Lipowsky (1988c, 1990b).

Lipowsky, R. (1988c). Random Fluctuations and Growth (ed. H.E. Standley and
N. Ostrowsky). Kluwer, Dordrecht.

Lipowsky, R. (1990b). Fundamental Problems in Statistical Mechanics VII (ed. H.
van Beijeren). North Holland, Amsterdam.
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1 Integration over small-scale fluctuations 

As discussed in Section 3, the interfacial configurations can be described, on 
large scales, by a single-valued displacement field, z = z(x). In thermal 
equilibrium, the statistical weight of the configuration z is given by the 
Boltzmann factor, exp( - 2 {z}). For convenience, we absorb the factor 1 / T 
into the definition of the effective Hamiltonian 2 which has the general form 

with the "free7' part 

and the "perturbative" part 

This Hamiltonian implicitly contains a small-scale cutoff, a. 
The model defined by (A.l)-(A.3) will now be studied by functional 

renormalization group (RG)  methods. Such a RG method consists of three 
basic steps. First, the fluctuating field, z(x), is divided up into two parts: 

where z <  represents the small-wavenumber or large-scale fluctuations with 
0 < \p\ < 1/ab and z, contains the large-wavenumber or small-scale 
fluctuations with l /ab < \p\ < 1/a. This division is chosen in such a way 
that the free part of the Hamiltonian, which is quadratic in z, also separates 
into two parts: 

In the second step of the RG, the small-scale fluctuations, z > ,  are integrated 
out which gives rise to an effective Hamiltonian, X { z <  }, for the large-scale 
fluctuations alone: 

where N is a normalization factor. It follows from (A.1) and (A.5) that 
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When this expression is inserted into (A.6), one obtains 

Here and below, the expectation value, ( . . . ), represents a functional integral 
over the small-scale fluctuations with the harmonic weight, exp [ - 2, {z, }I. 

Let us assume, for a moment, that we had performed this functional integral 
and thus had explicitly evaluated the expectation value (exp [ - ̂fl {z < + 
z,}]). In order to iterate the RG transformation, we would like to write 
the new Hamiltonian 2' {z<  } as 

and 

X l l{z<}  = [ x ~ ' b f ( X ) ~ ~ ~  (A. 11) 

i.e. we would like to parametrize the new Hamiltonian X ' { z <  } in the same 
way as the original Hamiltonian, X { z }  (see (A.l)-(A.3)). A priori, it is not 
clear that such a parametrization of X ' { z <  } is indeed possible. In fact, the 
new Hamiltonian X 1 { z < }  as obtained from (A.8) will, in general, not have 
the form given by (A.9)-(A.11): the integration over the small-scale fluctuations 
typically generates new terms in W { z <  } which have not been present in 
the original Hamiltonian X { z } .  However, one can often argue that these 
new terms are irrelevant as far as the critical behaviour is concerned. One 
may then employ additional approximation schemes in order to ensure that 
the form of the Hamiltonian is not changed under the RG. Two such schemes 
will be described further below. 

In the final step of the RG, the spatial coordinate, x, and the fluctuating 
field, z, are rescaled according to 

where b > 1 is an arbitrary rescaling factor. This transformation changes the 
small-scale cutoff from its new value, ba, back to its original value, a. 

If the new Hamiltonian can be brought into the form as given by 
(A.9)-(A.ll), one may obtain the renormalized interface potential, V(l)(z), 
from 
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which implies 

VW[z(x')] = bd-' V'[bcz(x')]. (A.13) 

2 Cumulant expansion and linear renormalization of interface potential 

What remains to be done is to actually calculate the expectation value 
(exp[-.3fi{z< + z>}])  in the expression (A.8) which defines the new 
Hamiltonian W .  In this subsection, we will assume that the interface potential, 
V,  and thus the perturbation ,3fl as given by (A.3) are small in some sense. 
One may then perform an expansion in powers of V or 6. This leads to 
the cumulant expansion of (exp [ - H'] ) as given by 

where the subscript c stands for cumulant (i.e. (& 6 )c = ( Jf, Jf. ) - ( ̂ f, )2, 
etc.). It then follows from (A.8) that the new Hamiltonian has the form 

up to first order in ^f,. Obviously, this expression has the desired form 
(A.9)-(A.11) with the new free part 

%'{z<} = %{z<}  = $(K/^)P2-"1^<(~)12 (A. 16) 

and the new perturbative part 

If one inserts (A.3) and (A. l l )  into the latter expression, one immediately 
finds the new potential: 

The last expectation value is easily calculated since z>  has a Gaussian 
distribution. One then obtains 

v l ( z < )  = exp[fiz;)a2/az2;] v(z<). 

For a "hard" spherical cutoff, the roughness (z:) of 
fluctuations is given by the momentum shell integral 

(A.19) 

the small-scale 
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The length scale & depends on the rescaling factor b. It is convenient to 
introduce another b-independent scale, a,, defined by 

a 2  - 2 , = 6 2 c / ( b Z c  - 1) = cd(T/J<)a2' (A.20b) 

with the dimensionless coefficient cÃ = 2/(47i)" r [(d - 1)/2]. One then has 
iii w a t  As in the limit of small As = b - 1, which will be discussed at the 
end of this appendix. 

It now follows from the rescaling transformation (A.13) that the interface 
potential, VCO)(z) = V(z), is renormalized according to 

with 

This differential operator can be expressed in terms of the integral 

dz' 
9 [V(z ) ]  = bd" exp[ - w z  - z ' ) ~ / ^ ]  V(zf) 

- - bd-1 dz' 
exp[ - ̂~ ' / a l _ ) ~ ]  V(bcz - 2'). (A.23) 

The latter form for the linear RG is intuitively appealing since it represents 
an averaging or coarse graining of the potential V(zl) over the scale a,, i.e. 
over the roughness of the small-scale fluctuations. 

3 Nonlinear renormalization of interface potential 

We will now describe a nonperturbative RG method which has been 
developed by Wilson (1971) in the context of bulk critical phenomena. More 
recently, this approach has been extended to interfacial phenomena by 
Lipowsky and Fisher (1986b, 1987). In this approach, the expectation value 
(exp[-s?fl{z< + z>}])  is directly calculated with the help of several 
approximations. 

By definition, the expectation value (exp[-2, { z <  + ? > } I )  represents 
a functional integral over the small-scale fluctuations as given by 
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Now, these small-scale fluctuations, z, (x), are expanded in a complete set 
of suitably chosen eigenfunctions or wave packets w ( x )  (Wilson, 1971): 

z ,  (x)  = x z i > J Q ~ i { x ) .  (A.25) 
i 

The prefactor ^/Q is included for convenience: it ensures that the components 
z: have the same dimension as z> ,  as will become clear further below. 

These wave packets are taken to be localized both in momentum and in 
real space. They are localized in momentum space in the sense that their 
Fourier modes are restricted to the momentum shell l / b a  < lpl < l / a .  
Furthermore, the wave packet W is also assumed to be localized within a 
real space cell labelled by i. The volume of this cell cannot be made arbitrarily 
small, however, because of the assumed localization in momentum space. 
Indeed, the smallest value of this volume, which will be denoted by Q, satisfies 
the "uncertainty relation" 

If the expansion as given by (A.25) is used in (A.24), the functional integral 
becomes a multidimensional integral over the components z;  : 

where constant normalization factors have been ignored. In addition, one 
obtains 

with 

and 

where the xi-integration in the last expression extends over the real space cell i. 
Now, some bold approximations will be used in order to simplify the form 

of the effective Hamiltonian as given by (A.28)-(A.30). First of all, off- 
diagonal elements of K i  are ignored and K i j  is approximated by 



352 G. Forgacs et a/. 

where tiij is the usual Kronecker symbol and l1 represents a length scale to 
be specified below. For q = 0, this truncation corresponds to the assumption 
that wave packets belonging to different real space cells have essentially no 
overlap. The same assumption also leads to the estimate 

since the only contribution from the /-summation in (A.30) then comes from 
the term with j = i. 

In addition, the large-scale fluctuations, z < ,  are taken to be essentially 
constant within each real space cell. The value of z<  within cell i will be 
denoted by z i .  This implies that the wave packet W,(x) must be orthogonal 
to a constant. The latter requirement can be satisifed by the simple ansatz 
W(x) = l / f i  for half of the real space cell, and W(x) = - l / f i  for the 
other half of this cell. If the latter form is inserted into (A.32), one obtains 

with 

G1(x, y)  =i,[V(x + y) + V(x - y)]/U. (A.34) 

The potential scale U is defined by 

where Q is given by (A.26) and thus depends explicitly on the rescaling factor 
b. It is again convenient to define a b-independent scale by 

where c,, = 2 / (47~)~" l r [ (d  - 1)/2] as in (A.20b). One then has U % v A s  in 
the infinitesimal rescaling limit with small A s  = b - 1. 

If the approximations for Yo{z>} and Pi {z< + z > }  as given by (A.28), 
(A.31) and (A.33) are inserted into (A.24), one obtains 

(exp[-& {z< + z>}]) = dz-> exp[- i ( ~ ' , / l ~ ) ~  - G1(z'<, z;)]. 
i I 

(A.36) 

In this way, the functional integral over the small-scale fluctuations has been 
reduced to a product of one-dimensional integrals over the components 2;. 

The approximation as in (A.36) will now be used in (A.8) in order to 
define the new Hamiltonian ^fl{z<}. Inspection of the resulting expression 
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reveals that the new Hamiltonian can again be written as ^ f ' { z < }  = 
Â¥^o [z< } + &' [ z< } such that the free part of the Hamiltonian is not 
renorrnalized, i.e. ^fo'{z<} = ̂ fo{z<}, while the other part, Zl1{z<}, is 
obtained from 

The assumption that the large-scale fluctuations, z< , are essentially constant 
with z< s: z$ in real space cell i then implies that 

with C = T / Q  as in (A.35a). Finally, it follows from (A.35)-(A.38) together 
with the rescaling transformation (A.13), that the initial potential V(O)(z) = V(z) 
is renormalized according to 

with 

where the potential enters through 

G ( z ,  z') = [V(bcz - z') + V(bcz + zf)]/2C. (A.41) 

So far, the length scale 1, has not been specified. Its value can be uniquely 
determined, however, if one requires that the nonlinear recursion relation as 
given by (A.39)-(A.41) embodies the linear RG as in (A.23) (Lipowsky and 
Fisher, 1986a, 1987). Indeed, if one compares the linearized recursion as 
obtained from (A.40) with (A.23), one finds 

where the latter length scale is given by (A.20). 
In the infinitesimal rescaling limit, b w 1 + As with small As, the nonlinear 

recursion relation (A.39)-(A.42) leads to a relatively simple flow equation. 
If one takes the b dependence of the scale factors 6(b) and %(b) into account, 
a straightforward calculation leads to the nonlinear flow equation (3.147) 
where the potential scale u and the length scale ai are defined by (A.35) and 
(A.20), respectively. 


