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Interface-unbinding transitions, such as those arising in wetting phenomena, are studied in two- 
dimensional systems with quenched random impurities and general interactions. Three distinct univer- 
sality classes or scaling regimes are investigated using scaling arguments and extensive transfer-matrix 
calculations. Both the critical exponents and the critical amplitudes are determined for the weak- and 
the strong-fluctuation regime. In the borderline case of the intermediate-fluctuation regime, the asymp- 
totic regime is not accessible to numerical simulations. We also find strong evidence for a nontrivial 
delocalization transition of an interface that is pinned to a line of defects. 

I. INTRODUCTION 

Interfacial wetting phenomena in random systems have 
been studied recently by scaling arguments,112 replica cal- 
culat ion~,~ and renormalization-group arguments.4 Vari- 
ous types of universal behavior have been predicted for 
the singularities at  critical wetting transitions. In the 
work reported here, we show that both the critical ex- 
ponents and the critical amplitudes can be determined by 
scaling arguments. We test all predictions by extensive 
numerical calculations for a two-dimensional random- 
bond lattice model. We discuss the conditions under 
which this model can be used to simulate a continuum. 

As usual, the growth of thickening of a wetting layer 
will be described as the unbinding of an interface from a 
hard wall. Two types of effective interactions act on the 
interface a t  a separation I from the wall: A direct in- 
teraction Vo(l) which arises from the microscopic forces 
between the molecules or atoms, and a fluctuation- 
induced interaction Va(l) which arises from the rough- 
ness of the interface and includes the effect of the 
quenched randomness. From scaling arguments, one esti- 
mates Vg(Z) - I T  for large I. The decay exponent is 
found to be r=2  for thermal fluctuations in a pure sys- 
tem, and T= 1 in random-bond systems. 

The competition between Vo and Va leads to various 
scaling regimes.' Apart from a mean-field regime, it has 
been predicted that there are three regimes in which the 
critical behavior is governed by interface fluctuations: a 
weak-fluctuation (WFL) regime, a strong-fluctuation 
(SFL) regime, and an intermediate-fluctuation (IFL) re- 
gime with various subregimes for the borderline case 
VaW Vo. In this paper, we will study the distinct critical 
behavior within these three scaling regimes. 

Our paper is organized as follows. After introducing 
the effective interface Hamiltonian in Sec. 11, we collect 
in Sec. Ill all known results about the scaling of a free in- 

terface. A derivation of these relations for general di- 
mension is given in Appendix A. In Sec. IV, the scaling 
relations are applied to an interface subject to a long- 
range potential with Vo-Is for large I. Apart from the 
critical exponents, we also determine the critical ampli- 
tudes. Thus we obtain a fairly complete description of 
the WFL regime. The IFL regime with s = -r is dis- 
cussed in Sec. V. In Sec. VI, the transfer matrix is intro- 
duced in order to describe the system by a partial 
differential equation of the Schrodinger type. The validi- 
ty of this equation for a lattice model is studied in Appen- 
dix B. This Schrodinger equation can be solved by a re- 
plica ansatz for the simplest short-range potential, i.e., 
for a square well.3 In Sec. VII, the behavior of an inter- 
face in this potential is studied as an example for the SFL 
regime. Again, scaling arguments are used to determine 
the parameter dependence of the critical amplitudes. Fi- 
nally, in Sec. VIII, we study a closely related problem, 
the unbinding of an interface from a symmetric square- 
well potential, without a hard wall at  I =0. 

For all scaling regimes, extensive numerical simula- 
tions have been performed. For different strengths of the 
direct interaction VOW and of the random potential 
Vr(x,l), a relaxation of Vr(x,l) is generated and then the 
transfer-matrix technique is used to calculate the inter; 
face configuration 1 (x). The mean interface separation I 
is obtained as the average over l(x).  A precise definition 
of /for different boundary conditions is given in Appen- 
dix C. Although we consider only two-dimensional sys- 
tems, the simulations are extremely time consuming. In 
Appendix C we estimate that the calculation time which 
is needed to obtain a value I with a given precision is ap- 
proximately proportional to iSn. This rather strong 
dependence restricts the numerically accessible range of 
the critical region. In practice, we controlled the error 
by monitoring the convergence of /by succesively averag- 
ing over configurations of increasing length. We retained 
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only those data points for which /became stable within 
3% limits. 

11. INTERFACE HAMILTONIAN 

To proceed, let x be the longitudinal coordinate, and 
describe the fluctuating interface by its distance l ( x )  
from the wall. As usual, only interface configurations 
without overhangs will be taken into account. The 
effective Hamiltonian "ft then has the form 

where 2 is the effective interface stiffness. 
The random potential V,.(x,l) describes the effect of 

quenched impurities. It is assumed to be Gaussian distri- 
buted and short-range correlated according to 

where denotes a smeared-out 8 function of width a. A 
lattice version of this Hamiltonian corresponds to an Is- 
ing model with random-bond disorder. Note that for 
D =0, the interfacial stiffness in an Ising model diverges 
in the limit of zero T. 516 

Finally, the external potential Vo(l) describes the 
direct interaction between the interface and the hard wall 
at I =0. In the case of complete wetting, it is given by 
Vo(l)=hl, where h is the difference in chemical potential 
between the wetting layer and the bulk phase separated 
by the interface. For the case of critical wetting, Vo is 
determined by molecular interactions between the 
different phases.7 

If Vo(l) contains repulsive and attractive components 
that are both long ranged, we are in the mean-field re- 
gime and /may be determined by minimizing vod). In 
this case, the effect of fluctuations can be calculated by 
perturbation theory.7 

Here, we focus on the different fluctuation regimes and 
take the repulsive component VR ( I )  of Vo(l) to be a hard 
wall with 

I oo for 1 5 0  
v ~ ( z ) =  0 for I > O  . 

In our numerical simulations at T = 0 ,  the interface 
configuration has been calculated in the random-bond 1s- 
ing model corresponding to the continuum model (1) and 
(2). As explained in Appendix C,  both models are 
equivalent as long as the interface fluctuations are weak. 

111. SCALING OF A FREE INTERFACE 

To assess the scaling behavior of the involved quanti- 
ties, we first consider a free interface with Vo =O. The re- 
sults will then be applied to an interface in a long-ranged 
potential Vo. 

An interface segment of longitudinal dimension L1 

has, on average, a transverse dimension 

For the present discussion, it is not necessary to give a 
more precise description based on the difference correla- 
tion function. The roughness exponent S, is ^=#-for 
thermally excited fluctuations; for random-bond systems 
it has been shown to be (=$.*P~ The relation (4) indi- 
cates that longitudinal and transverse lengths show 
different behavior under a rescaling of the system. If we 
assume that the reduced Hamiltonian 3i{l] /T  is invari- 
ant under the rescaling 

x+x/b  and l - + l / b C ,  (5 )  

we can determine the scaling dimension of the quantities 
involved in 'H. In Appendix A, we show how the ampli- 
tude lo is then obtained as a function of T, 3 ,  D, and ar 

For thermal fluctuations, one has lo = f th TI%, where 
fit, is a dimensionless constant. For random-bond disor- 
der, Nattermann and ~ e n z "  found the scaling form 

The asymptotic behavior of the function f (x)  is known: 
for T 4 ,  fluctuations are driven by the random poten- 
tial only, and the amplitude Zo must be independent of T; 
for high temperatures, on the other hand, the interface 
position is given by a broad distribution, and lo is in- 
dependent of al. Thus one obtains 

I fox ' I3  for small x 

f b ) %  f m  for large x . (7) 

Here f and f are two dimensionles,~ coefficients. 
These results shall now be used to discuss the scaling 

behavior of an interface in an external potential Vo(l). If 
the potential binds the interface with a mean distance /to 
the wall, it also restricts fluctuations of the interface to a 
range Ll The corresponding longitudinal length of 
the largest fluctuation is the correlation length gl,. We as- 
sume (4) to remain valid on all scales up to Ll, 5gll, 
Li 5 gl, so that we have 

where c is a coefficient of order one. 
On larger scales Lll  >>gl,; however, where L1 is bound 

by &, the interface is essentially flat. This may be seen as 
an elimination of capillary modes by the external poten- 
tial Vo(l). The corresponding loss in free energy can be 
described as a fluctuation-induced potential Vfl ( gl 1. The 
different contributions to Vfl stem from the elastic ener- 
gy, the entropy loss, and the random potential. 

The elastic energy can be estimated as 

~ ~ ( g ~ ) - s ( v l ) ~ - ^ / ^ ) ~ - ^ " ~ ,  (9) 

with a decay exponent ~ = 2 (  1 -^I/!;. For thermal fluc- 
tuations one has 3-2 in d = l +  1, and the entropy loss 
-TAs is of the same order as vv(Â£,i). In the presence 
of the random potential with r=I in d = I  + I ,  entropy 
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effects become irrelevant. Instead, the interface makes 
transverse excursions in order to lower its energy. This 
energy gain must overcome the elastic energy. So the 
random potential is expected to give a contribution A V of 
the order of Vv ( S\ ). 

Hence the fluctuation-induced potential is 

for both thermal fluctuations and random-bond disorder. 

IV. WEAK-FLUCTUATION REGIME 

Using these results, we will now determine the behav- 
ior of an interface in a potential that is given by a power 
law Vo -Is. A suitable parametrization is 

Here we have introduced the lattice constant a, as a 
cutoff at small I, in order to allow for exponents s <O. 
Furthermore, we have chosen a form that has an analytic 
continuation in the limit of zero s. 

In the weak-fluctuation regime, interface fluctuations 
are of the same order as the mean distance between the - 
interface and the wall, &=I. So we may estimate the to- 
tal free energy as 

and by minimizing Vtot we obtain for l Ã ˆ a  the asymp- 
totic result 

As this relation has been obtained from (4) through vari- 
ous rough estimates, we replaced lo by To to account for 
any prefactor. Also, To will be different for different func- 
tions V0dL The scaling forms for To are completely 
analogous to those for lo: For thermal fluctuations, we 
have To =Fth TVS, and in the presence of therandom po- 
tential lo = ( D  /'2.T)/( T ~ / u , D ~ )  with the two limiting 
cases 

Fox for small x 

'(x)z [ym for large x . 
As a numerical test of (131, we consider first the case 

that corresponds to complete wetting, s =1. The behav- 
ior i-w ^ with $=+ has already been confirmed at 
T =O.ll Here we report simulation results for T >O. 
With our choice T =0.15 we are clearly in the low- 
temperature regime, where To can be estimated as 

In our simulations, /has been measured as a function 
of w at three different values of D. In Fig. 1, the data are 
combined into a double logarithmic plot which shows the 
interfacial separation / against the rescaled potential 
strength w/D'^. The data collapse onto one curve 
which confirms the scaling of w and D over two decades 
in D. For small /, there are clearly lattice effects. For 

- 
FIG. 1. Interfacial separation 1 for the potential 

Vo(l)=w(l -al ) at T =O. 15 for different values of the disorder 
strength D. The data are scaled in order to test the scaling pre- 
diction i- ( w  /D2I3 ) * .  The line corresponds to i('=0.5 11, as 
found by a fit to the data with /> 3 . 5 ~ ~ .  Here, as in all the 
figures, units of ai=S/2= 1 are used. 

- 
1 2a1, on the other hand, the data fall onto a line, the 
slope of which is just the exponent I). In order to deter- 
mine the value of $ and its error, we have fitted a line to 
those data for which /> a i ,  with different cutoffs a i  in 
the range from 2a1 to 7aL. Thereby we find 
$=0.5 150.02, which agrees quite well with the predict- 
ed $=+. For the prefactor we obtain /o=-0.64k0. 13. 
In all the simulations, lengths and potential strengths 
have been measured in units of a1=.2/2= 1. 

Next, we consider the case s =0, where the potential 
(1 1) is replaced by its analytic continuation 

As there is a slight advantage in calculation speed, we 
performed the corresponding simulations at T =0. As 
shown in Fig. 2, the data collapse again for three different 

- 
FIG. 2. Interfacial separation I for the potential 

Vo(l)=w ln(l/ai- 1) at T=0 for different D. The dashed line 
corresponds to i- ( w /D2I3 1 " '  with an exponent ifr= 1.00, as 
found by a fit to the data with /> 4. 5a1. 
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- 
FIG. 3. Interfacial separation I for the potential 

Vo( l )=  w (1'-ai )/s with s =-0.5. The dashed line corre- 
sponds to the asymptotic scaling prediction ~ - ( W / D ^ / ~ ) ^ ;  the 
exponent gz1.98 was found by a fit to the data with /> 14ai. 

values of D. Asymptotically, the scaling prediction 
T-( W / D ~ ' ~ ) - ^  can be confirmed. As before, the ex- 
ponent can be determined with different cutoffs I> a , ,  
and is found to be $=0.99&0.02, in agreement with the 
predicted $= 1. The prefactor is fo^O.SlÂ±0.04 A 
closer agreement with the value of yo for the case s = 1 is 
not expected because the derivation of (13) implied that 
fo  may be different by a factor of 0 (1)  for different po- 
tentials Vo(l). 

The scaling result (13) should remain valid for negative 
exponents s as long as s > -r. By numerical simulations 
it is, however, quite difficult to verify (13). In Fig. 3 we 
show results for s =-0.5. The collapse x~f the data for 
different D is poor, and the asymptotic regime has 
presumably not been reached. By the same fitting pro- 
cedure as used before, we find 4=2.1*0.3, which is com- 
patible with the prediction \b=l, although it is much less 
significant than the results for s = 1 and 0. For the pre- 
factor, one finds fo =O. 63*0.22. 

V. INTERMEDIATE-FLUCTUATION REGIME 

On the borderline between the WFL regime and the 
SFL regime, Lipowsky and ~ieuwenhuizen'~ found for 
thermal fluctuations an intermediate-fluctuation (IFL) re- 
gime with some interesting features, resulting from the 
competition between Va{l) and the long-range part of 
Vo(l). In this case, the short-range part of Vo may play a 
crucial role. To study this effect, we introduce another 
parameter Vo(0)= -u instead of the cutoff used in (1 11, 
and define the potential by 

o o  for Z < O  
Vo(l)= -u for 0 5 1 < a L  I (17) 

-w/F  for a i 5 0 .  

For thermal fluctuations with D =0 and r=2, one finds 
three - different subregimes: If u is below a critical value 
ucm, 1 behaves as an essential singularity, 

and is independent of u (subregime A) .  For u > uÃ£m on 
the other hand, one has a power law 

where not only uc, but also the exponent + depends on w 
[subregimes B and C, with two different functions $( w)]. 

It has been suggested that a random-bond system 
should show qualitatively the same behavior when the ex- 
ponent in the potential (17) is r=l.' Again, it proved 
impossible to verify or to falsify this prediction numeri- 
cally. 

In Figs. 4-6, we report a series of simulations at T =0  
for D =4.5. Figure 4 shows 1 as a function of w at 
different values of u, fitted as an essential singularity 

At u = 1.4, we find wc < 0, indicating that we are outside 
sugregime A.  The other three curves depend only weakly 
on u, and are compatible with (20). For the prefactor in 
the exponent, we obtain y = 5.2k0.2; other simulations 
indicate that y should depend on D. However, as demon- 
strated in Fig. 5, the data shown in Fig. 4 may also be 
fitted by a power law 

- 
l=c4[[w -wc)/wc]-*. (21) 

Therefore, on the basis of the available data, a subregime 
A described by (20) cannot be confirmed. 

As a test of (191, /has been calculated as a function of 
u at different values of w; see Fig. 6. The data are well 

FIG. 4. Intermediate-fluctuation regime. The interface in the 
potential as given by (17) for T=0, D ==4.5, and different u. 
The dashed lines represent a fit of l(w) in terms of an essential 
singularity; see (20). 
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- FIG. 5. The same data as in Fig. 4, but fitted to a power law 
1-(w -wc For the effective exponent, one finds 
iAeff= 1.65*0.25. 

fitted by a power law 
- 
l d [ u  -uc(w)]-'6 with $=2 ; (22) 

thus the dependence of $ on w could not be verified. It is, 
however, unlikely that the data shown in Fig. 6 belong al- 
ready to the asymptotic range i>>al for which (19) 
should be valid. This is evident from the behavior for 
w =O. 6,  where i i s  well described by (22) until it attains a 
finite value at I= 100. 

VI. TRANSFER MATRIX 
AND SCHR~DINGER EQUATION 

Our discussion of the SFL regime is based on an ana- 
lytic result found by a replica ansatz. Therefore, at this 
point we have to introduce the transfer-matrix method. 
For the application of this formalism, we have to discre- 
tize the model in the horizontal direction, so that the 

FIG. 6. Dependence of the interfacial separation /on the 
short-range part Vo(0)=-u of the potential (171, for T=0, 
D =4.5, and different w. The dashed lines represent the func- 
tional dependence /- (u - uc ) ' .  The asymptotic behavior of T 
is, however, not accessible, as is evident for w ~ 0 . 6 .  

Hamiltonian (1) decomposes as 

with 

weight W(x,l) of a path ending at (x,l) satisfies the 
equation 

where A" is an arbitrary normalization constant. The in- 
tegral kernel in (25) is called the transfer matrix. In the 
limit of infinitesimal Ax, an expansion of (25) leads to a 
differential equation of the Schrodinger type. All at- 
tempts to find analytic expressions for W(x,l) are based 
on this Schrodinger equation. Numerical implementa- 
tions of (23, however, use a discrete lattice with finite Ax 
for which the integral f dl' is repalced by a sum M I .  
To find out under which conditions the analytic expres- 
sion might be valid for finite Ax and AZ, we review the 
derivation of the differential equation in Appendix B. 

We find that one has to require 

and, in addition, one of the two inequalities 

AZ <<(~Ax/S) l" l  <<cl for case (i) , 
(27) 

( T A X / ~ Â ¥ ) ~ ' ~ Ã ‡ M <  for case (ii) . 
Under these conditions we can write (25) as the 
Schrodinger-type equation given by 

with the Hamilton operator 

For the coefficient J?, one obtains 

1s for case (i 1 

where the cases (i) and (ii) are given by the corresponding 
condition in (27). 

Note that condition (i) is automatically satisfied in the 
continuum limit, with infinitesimal Ax -A/. In a numeri- 
cal simulation, however, cl/AZ is restricted by the finite 
size of the system, and it is easier to fulfill condition (ii) 
by an appropriate choice of T. 
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VII. STRONG-FLUCTUATION REGIME 

By analogy with the case of thermal fluctuations, we 
expect the strong-fluctuation regime to display universal 
behavior for all potentials that are more short ranged 
than V Ã ˆ ( l )  Here we study the simplest short-range po- 
tential, a square well given by 

00 for / < 0  
-u for O < l < a v  

0 for a v < l .  

In the absence of random impurities (D =0), this poten- 
tial allows for an indirect test of the validity of (28) for 
discrete systems. There exists a well-known solution of 
the stationary Schrodinger equation that yields for - 
1 >>av 

For u =uO, condition (26) takes the form 

In the limiting case (ii) as given by (301, this reduces to 

In this case, we may choose av=A/, since the inequality 
in (27) assures that the exponential factor is small com- 
pared to one. In the limiting case (i), on the other hand, 
one has r = r 2 / 2 2 ,  and a combination of (33) and (27) 
yields 

Furthermore, the asymptotic Schrodinger equation result 
(32) is valid only if a v  <<z These conditions are satisfied 
in the continuum limit, but are almost impossible to real- 
ize in a numerical simulation, where we are restricted to - 
I ;S 100AZ. In order to vary I over at least two decades, 
we have to choose av=AZ. 

This conclusion has been confirmed by numericalcal- 
culations with D =O; see Fig. 7. At different T, I has 
been determined as a function of u. Since no average 
over random distributions is involved, these numerical 
data are very accurate. We confirm the probability - 
1 - ( u -uo ) I ,  and obtain by extrapolation the critical 
potential strength u0. In Fig. 7, these values for uo are 
plotted against T. For low temperatures, T 5 1, we find 
un- r ,  with as given by (30) case (ii). The high- 
temperature case (i), with r- T ~ ,  on the other hand, is 
not accessible because our choice av=Al violates condi- 
tion (35). Thus we conclude that the continuum model, 
described by the Schrodinger equation (28) and case (ii) 
for I?, can accurately be simulated on a discrete lattice as 
long as we work at sufficiently low temperatures. 

We now come back to the case of random-bond disor- 
der. By a replica ansatz, ~ a r d a r ~  obtained for the well 

FIG. 7. Critical potential strength u,, for unbinding by 
thermal fluctuations ( Vr =0) from a square-well potential as in 
(31) with ar=Al.  In the low-temperature range, 
uo =0.85T exp( - l /T) (solid lines), whereas the high- 
temperature behavior u0 - T2 (dashed line) is not accessible. 

potential (31) in the presence of a random potential the 
behavior 

Both equations show spurious singularities at small T. It 
seems that these divergences are due to the neglect of the 
finite width of the random potential correlation as in (2). 
There is no obvious way to include such a finite width in 
the replica formalism. 

We can, however, go back to the scaling arguments 
presented in Sec. 111, and use the scaling function (6) for a 
generalization of (36). As in Sec. IV, we introduce a new 
notation, 

in order to account for differentprefactors. We replace 
D / T  by the general form lo%/f a and substitute uc for 
u0 in the amplitude of /. So we conjecture that the full 
description of the interfacial behavior is given by the scal- 
ing form 

with 

For large T, these relations contain the replica result (36) 
since f ( x  ) = f a for large x .  For small T, u0 as given by 
(32) goes rapidly to zero due to the exponential factor in 
I?, and we obtain the asymptotic behavior 
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w^ 
with uc (D, T) ss 

7mava1132 'I3 ' 

where f(x)wfQX 'I3 has been used. Numerically, the 
general result i- (u - uc ) could be confirmed over a 
wide range of T and D values. Some of the data obtained 
at an intermediate temperature T =O. 5 are shown in Fig. 
8. By extrapolation of these and similar data we find the 
critical potential strength uc(D, TI. In Fig. 9, uc is plot- 
ted against For low T, or for large D, we verify 
uc - D ~ ~ ~  as predicted by (40). For T = 1.0, the crossover 
to the high-temperature asymptote uc -D can be seen at 
least qualitatively. For the dimensionless prefactors, we 
find the estimate f / f ~ 0 . 5 6 .  

For a more direct confirmation of our conjecture, we 
show in Fig. 10 numerical results at T =0, plotted 
against the reduced potential strength (u -uc )/uc, with 
the critical potential strength uc as given by (40). 

VIII. DELOCALIZATION FROM A SYMMETRIC 
SQUARE-WELL POTENTIAL 

Finally, let us consider an interface in the two- 
dimensional Ising model which contains a "defect line" 
of weak bonds. In this case, the interface feels an attrac- 
tive potential given by 

0 for I S  -av/2 

vO(l)= - u  for -av/2<l <av/2 (41) 

0 for av /2SI  

In the continuum limit, this potential should belong to 
the same universality class as the 8 function potential 
Vo(I)=-uS(I). Since /=0 by symmetry, we have to 
study the second moment L=(/T)''~. A finite value of 
describes a localized interface pinned to the well. 

In the absence of frozen disorder, the interface is al- 
ways localized by the defect line for u > 0. l3 It is then 
useful to study the behavior of Vo(l) under the scale 

FIG. 8. Interface in the well potential (31) at T =0.5 for 
different D. The behavior I- ( u - uc is confirmed. The crit- 
cal potential strengths uc( T, D )  shown in the next figure are ob- 
tained by extrapolation of these data to / ' / 2=0 .  

FIG. 9. Critical potential strengths uc(D,T), as determined 
by extrapolation from numerical calculations of Kit}. For small 
Tor large D, uc =0.70D2/3, as given by the dashed line. 

transformation given by 

x -x /by 1-1 /b ,̂ and %-^W , (42) 

which implies ~ ~ ( l ) + b t ' r V ~ ( b ^ l )  with r=(l-x)/C. For 
the &function potential Vo(l)= -u6(/), this implies 
u -bAu with A.=$"(r- 1). In the case of thermally excit- 
ed interface fluctuations with 1,=$ r=2, and A,=+, this 
corresponds to the trivial delocalization fixed point 
V$ ( l ) = 0  and the critical behavior c1-u ' ,  with 
vl=S/A,= 1. A random-bond system in d = 1 + 1, on the 
other hand, represents a marginal case, since r = l  and 
A=0. It is then possible that the delocalization transition 

FIG. 10. Interface in the well potential (31) at T=0 for 
different D. The interfacial separation is plotted against the re- 
duced potential (u -uc)/uc with uc as given by (40). 
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FIG. 11. Pinning of an interface by a line of defects [square- 
well potential (41) with ar=A/l at T =0. The second moments 
shown are he(+, X )  and & ( ~ , 0 ) .  All data are consistent 
with &-(u and uc >O. 

is given by a nontrivial fixed point V 8 ) ,  and occurs at 
u =uc#0. 

Preliminary simulations by ~ a r d a r ~  indicated a transi- 
tion at u =uc#O, with cl-(u -uc 1 '  and vl= 1. The 
evaluation of l ( x )  was, however, restricted to 
-3051 5 30, and so the asymptotic regime was not 
reached. 

Here we performed simulations over the range 
- 1000 5 1 5  1000, which implies that & could grow up to 
cl= 100. Results at T =0 are shown in Fig. 11. The 
quantity S , , l "  has been plotted against u, so that uc can 
be determined by extrapolation of this quantity to zero. 
In these simulations, we have computed not only Lo but 
also L a  (see Appendix C) .  Thus the critical 

strengths uc could be determined by two independent ex- 
trapolations. We find uc=O. 15+0.005 for D ~ 0 . 5 ,  and 
uc=0.27+0.02 for D =2.0. Thus the interface seems to 
undergo a nontrivial delocalization transition. The data 
are consistent with 
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APPENDIX A: SCALING FORMS 

In Sec. 111, we used scaling forms for the amplitude In 
in order to estimate various amplitudes and the effective 
potential acting on the fluctuating interface. Here we 
show how these scaling forms are obtained in general di- 

mension d =dll + 1. 
We start from the effective Hamiltonian ft in the form 

with 

The scaling relation found for the interface fluctuations 

suggests that the reduced Hamiltonian ft/T is invariant 
under the rescaling 

x-x/b and l - r l / b ^ .  (A4) 

Accordingly, the widths of the random potential distribu- 
tion rescale as al l  +al, /b and a,l -a,, /b^. To determine 
the scaling dimension of the quantities T, D, and 2 we in- 
troduce reduced variables with the dimension of a length, 

From the scale invariance of W T ,  we obtain the rescal- 
ing 

(dll -2+2Q/d 
IT dT /b I, I , /^d-s+w/d (A61 

Now, two length scales a n  and a l  are defined as 
X. 1-x1 

, and the exponents xi are chosen to ensure 
the simple scaling behavior a o - + a o  a~nd a +a /b^. By 
elementary algebra, one finds 

(4-5$-dll )dl, /(3dll -2)( 1-I,) 
aO=lT 

(-2+2^+dll )(dl, + l)/(3dll -2)(1-L) 
x In (A71 

and 
(4-dl)dll/(3d1,-2) (d -2)(dll+l)/(3dli-2) 

a1  =IT lD 11 (A81 

We now proceed to determine a scaling form for the 
amplitude In. As (A31 is valid for dilferent length scales, 
lo has to be invariant under the rescalling (A4). In the ab- 
sence of a random potential, In can depend on T and 2 
only. Since c=(2  -di, )/dl[ for thermally excited fluctua- 
tions, the scale-invariant length a n  is simply given by 
a o = I T = ~ / 2 ,  and In= f thT/2 ,  where f t h  is a dimen- 
sionless coefficient. 

In the presence of frozen randomness, lo will depend 
on the strength D and, in general, on the vertical width 
a, of the random potential correlator given by (A2). The 
horizontal width a l l ,  however, should be A 
scale-invariant combination of T, 2 ,  D, and a, must then 
have the form 

In d = 1 + 1 dimensions with c=+, one has 
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In the limiting cases of small and large T, the function 
f (x) is determined up to a dimensionless coefficient: For 
small T, lo must become independent of T, which implies 
f ( x ) w f ~ x l / ~  for small x. For large T, on the other 
hand, the distribution of interface positions is thermally 
broadened and thus insensitive to the microscopic details 
of the random potential. In this case lo is independent of 
a,, and we have f (x as f for large x. 

APPENDIX B: DERIVATION 
OF THE SCHRODINGER EQUATION 

In this appendix, we show under which conditions the 
recursion 

with 

may be transformed into a partial differential equation of 
the Schrodinger type. 

If the distribution W(x,ll) as a function of 1' varies 
slowly on the scale Al, it can be expanded into a Taylor 
series, leading to 

The dummy variable I" counts the steps of the interface 
in the I direction. 

At this point, we have to make three different approxi- 
mations in order to obtain from (B3) a differential equa- 
tion: 

(1) The first approximations is made performing the 
sum over 1'' in one of the two possible limiting cases. In 
case (i) the variance  TAX/%)"^ of the Gaussian ex- 
ponential is large compared to the lattice constant A/. 
The sum can then be performed as an integral, and one 
obtains 

034) 
In case (ii), on the other hand,  TAX/%)^/^ is small 
against A/, so that it is sufficient to consider only jumps 
by /''/A/ =0, * 1 (in the restricted solid-on-solid model, 
this condition is imposed a priori). In this case, the sum 
can be performed explicitly, leading to 

(2) The next approximation consists in retaining only 
the second-order terms in 3/31. Choosing an appropriate 
normalization JV, we obtain 

with a coefficient r that is different in the two limiting 
cases: 

7~ for case ( i )  
- - 

r= (B7) 

l s e x p  [-%I for case (ii) . 

The range of validity of the second approximation may 
be estimated by replacing 9/Ql by l/&. Gathering the 
conditions for the first and second approximations, one 
has to require 

A I < < ( T A X / ~ , ) ~ / ~ < < ~ ,  for case ( i)  , 
(B8) 

( TAX <<A1 <<gL for case (ii) . 
(3) Finally, the third approximation is made retaining 

only the first order of the Taylor expansion of 
expf -AxV/T). This leads to 

provided 1 V(X, l)\^x /T << 1. If W(x, I) is smooth as a 
function of x, (B9) can be written as a Schrodinger equa- 
tion: 

with a Hamilton operator 

APPENDIX C: NUMERICAL SIMULATIONS 

In this appendix, we comment on the algorithms used 
for the numerical simulations both at T =0 and T >O. 
In particular, we explain the different averaging pro- 
cedures that lead to the mean distance I o f  the interface 
from the wall. 
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The first remark is about the very definition of the 
model. When the lattice is seen as a discretized version 
of the continuum model, the energy per step in the x 
direction is given by (24): 

The original motivation to study random-bond systems, 
however, came from the Ising model, which leads directly 
to 

In the absence of V(x,l), a renormalization of the corre- 
sponding transfer matrices15 shows that (Cl) and (C2) be- 
long to the same universality class, the behavior on large 
scales being given by (Cl). Alternatively, one may use 
the central limit theorem to show that the behavior on 
large scales is governed by a Gaussian distribution. For 
numerical purposes, both definitions of Hx(l,l ') are 
equivalent as long as we are in the low-temperature re- 
gime with  TAX/^)'^ <<Al, for which most jumps in 
the 1 direction are by one lattice constant only and 
(1 -lr)/Al=O,kl. 

At T =0, the ground state of the interface is given by a 
path {/(XI]  of minimal energy. Let E (x,l) be the 
ground-state energy of an interface running from (0,O) to 
(x, 0. It can be determined recursively by 

Let L, be the vertical size of the simulated system. At 
first sight, it might seem necessary to compute 
HX(l,l1)+ E(x, 1') for all pairs (/,I1 ), taking L \ operations 
per recursion step. However, if &(l , l r)  is given by ((221, 
the computational effort can be reduced to 0 (Ll)  by an 
efficient algorithm due to Huse and Henley; see Ref. 11. 
We performed all simulations at T =0 with HX(l,lr ) as 
given by ((22). 

The mean interfacial separation /can now be deter- 
mined in two different ways. By averaging over the l (x )  
that minimize E (x, l (XI), we obtain a mean value I, that 
corresponds to a free boundary condition at the edge 
(x,l(x)). On the other hand, we first calculate a path of 
minimal energy, [l{x)}, connecting (0,O) and (Ll,,O), and 
then average l (x)  along this path. We then obtain a 
mean value iaV that corresponds to an interface segment 
pinned at the boundaries x =0 and La. As the calcula- 
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tion of /Ã£ requires considerably more calculation time 
than that of I,, we have determined i=la  throughout 
Secs. IV-VII. In Sec. VIII, results for both mean values 
are given. As is to be expected, one finds that /Ã and iÃ£ 
exhibit the same critical behavior. 

For T > 0, the interface configurations are governed by 
the distribution W(x,l). We start from an arbitrary ini- 
tial distribution, e.g., W(OYl)=6(.l). Then, we compute 
W(x,l) by the recursion relation (Bl), implemented in the 
form 

AxV(x,l) 
W(x +Ax, l)=exp [- 1 

I W(x,l +I") , 

(C4) 

Again, it is prefer- with a subsequent normalization step. 
able to work in the low-temperature range, where the 
summation in (C4) has to be performed over a small num- 
ber of steps I" only. In this case, the number of opera- 
tions required by (C4) is again of the order L l .  Since at 
T > 0 there is no computational advantage in using (C21, 
Hx (I,/' ) has been simulated as given by (CD. The mean 
interfacial separation I, is given as an average over the 
thermal expectation values 

We conclude this appendix with an estimate of the 
computation time needed for one mean value /. To en- 
sure that /is not affected by finite-size effects, we choose a 
transverse system size of about L d l .  In order to 
determine iwith an accuracy of 3%, we have to average 
over 1000 independent realizations of the random poten- 
tial V,.(x,l), or over 1000 uncorrelated interface segments 
in a single, large realization of Vr. Interface segments 
can be regarded as uncorrelated when they are separated 
by a correlation length tI1. So we have to average over a 
system of horizontal size Lll ==lOOO~,l. According to (81, 
one has &-&2y and in all fluctuation regimes the rela- 
tion {,-I is valid. Thus the total number of operations 
will be of the order 

The strong dependence on /explains why our data are re- 
stricted to /^ 100. 

"R. Lipowsky, Phys. Rev. Lett. 52, 1429 (1984); Phys. Rev. B 32, 
1731 (1985). 

8D. A. Huse and Chr. L. Henley, Phys. Rev. Lett. 54, 2708 
(1985). 

9D. A. Huse, Chr. L. Henley, and D. S. Fisher, Phys. Rev. Lett. 
55,2924 (1985). 

'"Th. Nattermann and W. Renz, Phys. Rev. B 38,5184 (1988). 
"M. Huang, M. E. Fisher, and R. Lipowsky, Phys. Rev. B 39, 



13 052 JOACHIM WUTTKE AND REINHARD LIPOWSKY - 44 

2632 (1989). 14G. Grinstein and S.-k. Ma, Phys. Rev. Lett. 49, 685 (1982); 
12R. Lipowsky and Th. M. Nieuwenhuizen, J. Phys. A 21, L89 Phys. Rev. B 28,2588 (1983). 

(1988). 15F. Julicher, R. Lipowsky, and H. Muller-Krumbhaar, Euro- 
13Th. W. Burkhardt, J. Phys. A 14, L63 (1981). phys. Lett. 11,657 (1990). 


