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Lipowsky and Girardet Reply: In our Letter, we studied 
the shape fluctuations of solidlike membranes by Monte 
Carlo simulations and scaling arguments 111. In contrast 
to previous simulation studies, we used periodic boundary 
conditions for the fluctuating membrane in order to 
suppress edge effects 121, and studied a large number of 
membranes with different elastic moduli. We found (i) 
that the roughness exponent is J= 7 and (ii) that there is 
a pronounced crossover between fluidlike shape fluctua- 
tions on small scales and solidlike shape fluctuations on 
large scales. This crossover should be observable for the 
plasma membrane of red blood cells or for any other 
membrane which contains a two-dimensional network 
with a relatively large mesh size [ll. 

Our result C= 7 was in sharp contrast to previous re- 
sults on tethered networks which led to the estimate 
J=0.65 & 0.05. In the preceding Comment 131, Abra- 
ham now finds that this estimate for tethered networks is 
strongly reduced if one uses periodic boundary conditions 
for these membranes as well. Indeed, he now finds 
(==0.53 which is much closer to our value J= 7 .  Even 
though the remaining difference between his estimate 
C=O.53 and our prediction Ja  i is quite small, it has 
important consequences: For C,> i, the shear modulus 
becomes scale dependent and vanishes on large scales; for 
J= t ,  on the other hand, the shear modulus may stay 
finite on large scales. We will now give additional argu- 
ments which support both our previous result t,= ? and 
the existence of a finite shear modulus. 

If one integrates over the lateral phononlike displace- 
ment fields 141, one arrives at the effective Hamiltonian 

for the transverse displacement field 1, where K and Y are 
the bending rigidity and the Young modulus, respectively. 
The symbol Pij represents the transverse projector and 
Qi=Q/Qxi. The external potential V(l) serves as a large- 
scale cutoff for the shape fluctuations. 

In our Letter, we studied the potential V(1) =m for 
1 < 0 and V(l) =Pl for 1 2 0 .  Here, it is more convenient 
to use the harmonic potential V(l) = 7 G12. The statisti- 
cal weight, expi- %{/)/TI, then depends on the reduced 
parameters KIT, G/T, Y/T and, in general, on the small- 
scale cutoff, a. 

The perturbative loop expansion for the model as 
defined by (1) can be expressed in terms of Feynman dia- 
grams. The cutoff dependence of these diagrams is em- 
bodied in their one-particle irreducible (1PI) parts which 
represent the vertex functions, I-̂ . Any 1PI diagram 
-Ym, which contributes to the vertex function r ^ ,  con- 
tains N v Z m  vertices, NI =2m -n/2 internal lines or 
propagators, and NL = N I  - (m - 1 ) number of loops. In 
momentum space, each vertex carries a projector h ( q )  
-6.. ,, - qiffi/q2 and a factor -q4, the propagators are 
- T/dcq4+ G I ,  and each loop leads to one momentum 

integration, fd2q.  The latter integrations implicitly con- 
tain a high-momentum cutoff - l/a. Therefore, such a 
IPI diagram scales as -(l /a)s with s =4m -n -41Vl 
+ 2 N ~ = 2 ( l  -m). Sinces < 0  for m >  1, theonly diver- 
gencies which can occur for large I la  must arise from 
one-loop diagrams with m = 1. There is only one such di- 
agram which has to be taken into account 141. This dia- 
gram is, however, finite even for l/a ==, since the pro- 
jector Pij(q) satisfies Pij(q)qj =Pij  (q)qj "0. 

Thus, all 1PI diagrams are finite for a =0, and the loop 
expansion is well defined in this limit. Then, the statisti- 
cal weight depends only on KIT, G/T, and Y/T, and di- 
mensional analysis implies a certain scaling form for the 
roughness fJ.: 

Our Monte Carlo simulations show that the limit of zero 
bending rigidity, K =O, is attained in a smooth way. It 
then follows from (2) that VJ. = k. Quite generally, a 
rough membrane consists of an ensemble of humps [51 
with a lateral extension Â£ and a transverse extension 
fJ--flf. This implies a fluctuation-induced potential 151 
V F L - ~ / f f -  l/fi^. Minimization of VFL+ V(&) then 
leads to Â£, 1 1 ~ " ~  with v p C / ( 2 + 2 ^ .  Therefore, VJ. 
= is equivalent to C,= 7 .  

For C= 1, the shear modulus -Y could still vanish on 
large scales with a weak logarithmic scale dependence 
[ll. In the present context, this would imply Y ~ ~ ~ ( { I I )  - l/[ln(fl~/a)lr with r > 0 for large ^\\. However, such a 
behavior cannot apply to the limiting case with a=O. 
This indicates that the shear modulus remains finite on 
large scales in agreement with our Monte Carlo results. 
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