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Abstract. - 1-dimensional strings governed by a finite tension are studied in
dimensions. In the presence of a short-ranged attractive interaction, two strings undergo a
nontrivial unbinding transition for any value of . The characteristic unbinding temperature

vanishes as for large . The critical exponents evolve with in a singular and
nonmonotonic way. For , the typical string fluctuations consist of humps with roughness

exponent ; for , on the other hand, these humps become more and more exceptional
as the transition is approached and are then governed by a power law distribution.

Consider a dimensional manifold embedded in dimensions. The shape
fluctuations of such a manifold lead to a variety of critical phenomena [1]. Examples are
provided i) by the thermally-excited roughness of polymerized membranes in
[2-4]; ii) by the roughness of strings (or directed polymers) in when subject to
frozen randomness [5,6], and iii) by unbinding transitions of interfaces and membranes in

, which represent wetting and adhesion transitions, respectively [7]. These critical
effects have been recently studied by a variety of theoretical methods. The results of these
studies are all consistent with the general expectation that the critical exponents which
govern these effects vary with in a smooth and monotonic fashion.

In this paper, I study two interacting strings in dimensions. Here and below,
the term «string» is used for a 1-dimensional object which has two properties: i) it is directed
in the sense that its tangent vectors point, on average, into a certain direction, and ii) its
shape fluctuations are effectively governed by a finite tension. Physical examples are
domain walls in adsorbed monolayers, vortex lines in type-II superconductors, directed
cylindrical micelles in chemical equilibrium with the surrounding medium, and presumably
some directed polymers [8] such as polyelectrolytes.

For any value of , two strings are found to undergo a nontrivial unbinding
transition when they interact with a short-ranged attractive potential. The critical
behaviour at these transitions can be determined exactly by transfer matrix methods and is
found to have the following properties: i) the critical exponents do not vary smoothly with .
For example, the critical exponent for the correlation length is a piecewise parabolic
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function of , see eq. (17) below; ii) the exponents do not vary monotonically with , see
again eq. (17); iii) the character of the shape fluctuations is qualitatively different for
and for . For , the typical string fluctuations consist of an ensemble of humps,
which are characterized by the roughness exponent ; for , on the other hand,
these humps become more and more exceptional as the transition is approached.

A priori, one might expect that and represent borderline dimensionalities
for the critical behaviour at unbinding transitions in . This expectation is indeed
confirmed by the exact results reported here. However, the complex evolution of the critical
behaviour with implies i) that a perturbative expansion around can, in general, only
be trusted for , and ii) that a perturbative expansion around in powers of
must fail completely, see eq. (23) below.

In the language of the renormalization group, the behaviour found here arises from the
presence of a marginal «operator» the strength of which depends on . This «operator»
represents an effective potential between the strings. More precisely, this potential acts on
the absolute value of the relative displacement, , of the strings (for ) and arises from
an average over the angular fluctuations of this displacement. Scaling arguments indicate
that such a marginal «operator» arising from the angular fluctuations should, in general, be
present for unbinding transitions in provided       .

To proceed, consider two strings (or directed polymers or vortex lines) which are, on
average, parallel. Their position is measured by the coordinates and , respectively,
where is a dimensional vector. Their tensions are denoted by and , and their
mutual interaction by which is taken to depend only on their local distance. The
effective Hamiltonian for the two strings is then given by

(1)

As usual, one may separate this Hamiltonian into two parts depending on the «centre-of-
mass» coordinate, , and on the relative coordinate, [4].
The latter coordinate is then governed by

(2)

In the following, I will focus on interaction potentials with which are short-
ranged. More precisely, I will assume i) that has a hard wall at with
for ; ii) that has a finite range, , with for ; and iii) that is
attractive, i.e. that for

Since represents a 1-dimensional coordinate (which plays the role of «time»), the
statistical properties of the model (2) can be studied by transfer matrix methods which lead
to the dimensional Schrödinger-type equation

(3)

with the Laplacian

Since the interaction potential depends only on , the Laplacian may be
decomposed into its radial and angular part [9]:

(4)

.

.
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The eigenvalues of the angular-momentum operator, , are with integer
. The term in (4) can be eliminated by the transformation
, where represents the radial part of . In addition, it is convenient to

introduce the dimensionless coordinate , the rescaled potential
, and the rescaled energies . One then arrives at

(5)

with

(6)

The range of is given by . Note that the total potential now consists of the short-
ranged part, , which is proportional to , and the inverse power law potential,

, which is independent of temperature. Such a potential belongs to the so-called
intermediate fluctuation regime [10,11].

Within the transfer matrix approach, the statistical properties of the fluctuating field
can be obtained from the ground state, , and the ground-state energy . In

particular, the interacting strings undergo an unbinding transition when goes to zero
from below and merges with the band edge of scattering states. In order to determine the
ground-state properties, one has to consider the Schrödinger-type equation (5) with
replaced by

(7)

Thus, the amplitude of the power law potential is a piecewise parabolic function
of , which is periodic for

Furthermore, one has the relation . It then follows that the ground-state
energy vanishes at a certain strength of the short-ranged attraction [10]. Thus, the
interacting strings undergo an unbinding transition for any value of . In what follows, I
will focus on the physical region

For , the total potential has a local minimum at ,
where is negative and of order one [10]. For large , the amplitude as given
by (6) and (7) behaves as . Since is proportional to , the unbinding
temperature, , scales as

(8)

For , the short-ranged interaction potential vanishes, and the ground state of
(5)-(7) is given by

(9)

where is a modified Bessel function with index

(10)

.

.
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For , the form of is determined by the short-ranged potential, . The two pieces
of must match at . This implies

(11)

which represents an effective boundary condition for . Inserting the explicit form (9)
into (11), one obtains

(12)

The asymptotic behaviour of the modified Bessel function for small implies that

The unbinding temperature, , is now implicitly given by

(13)

Note that is nonmonotonic for . The critical behaviour of then follows from
the expansion which implies

(14)

The variable is directly related to the longitudinal correlation length via

(15)

The critical behaviour of this quantity is obtained when the asymptotic behaviour of
for small is inserted into (14). As a result, one finds

(16)

with

(17)

For , exhibits a confluent logarithmic singularity:
For and , the expression in (17) leads to which corresponds to the
essential singularity

(18)

where is a nonuniversal constant as follows from the asymptotic behaviour
for small .

.
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The behaviour of the transverse fluctuations is contained in the probability distribution

(19)

Close to the unbinding transition, i.e. for small , this distribution behaves as

(20)

where the index is given by (10). For , one has
These distribution functions determine the critical behaviour of the moments, . A

straightforward calculation leads to

(21)

For , on the other hand, one finds

(22)

In the latter case, the distribution attains the limiting form

(23)

The distinct behaviour of the fluctuations for and can be understood in an
intuitive way using the heuristic hump picture which has been previously developed for
interfaces and membranes [1]. Thus, assume that the string fluctuations consist of humps
with a lateral extension and a transverse extension with the roughness exponent

. The probability to find such a hump can be estimated by

(24)

where represents a scale factor. It follows from (20) that

(25)

in the limit of large (for any value of ). The moments of can now be estimated
according to

(26)

which again leads to the critical behaviour as given by (21) and (22).
Thus, the string fluctuations are indeed described by an ensemble of humps with

roughness exponent for all values of . However, the behaviour of as given by
(25) implies that these humps represent typical fluctuations for but exceptional
fluctuations for .
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