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Low-dimensional manifolds which interact via attractive forces can undergo an unbinding tran-

sition from a bound state at low temperatures to an unbound state at high temperatures. Three

model systems are considered for which the critical behavior at these transitions can be determined

exactly: ( i ) two interfaces in spatial dimensionality interacting with power-law interac-

tions; ( i i ) the necklace model for interfaces in ; and ( i i i ) two interacting strings in

. It is shown that the critical behavior is identical for all three models provided one uses

an appropriate identification of the model parameters.

1. Introduction

Many physical phenomena such as, e.g., wetting [1 ] and adhesion [2] are gov-

erned by the mutual interaction of low-dimensional manifolds such as interfaces and

membranes. Quite generally, thermally excited shape fluctuations of these objects re-
normalize their direct interaction arising from intermolecular forces [3]. This renor-

malization acts to increase the repulsive part of the interaction. At low temperatures,

the shape fluctuations are weak and the renormalized interaction closely resembles

the direct interaction. However, as the temperature, is increased the renormaliza-

tion becomes more and more effective up to a characteristic unbinding temperature,

, at which the manifolds undergo a transition from a bound to an unbound

state. For interfaces and membranes, these unbinding transitions represent wetting

and adhesion transitions, respectively.

The critical behavior at these transitions involves several length scales: the mean

separation, , of the manifolds, the roughness , and the lon-

gitudinal correlation length , see fig. 1. In many systems, the mean separation

and the roughness exhibit the same divergence at the transition. In this case, the

probability to find a hump as shown in fig. 1 is always of order unity, and these humps

represent typical shape fluctuations. However, it will become clear further below that,

in some systems, this probability becomes smaller and smaller as the transition is

approached. In the latter situation, the hump shown in fig. 1 represents an exceptional

fluctuation.
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Fig. 1. Bound state of two interacting manifolds with mean separation , roughness

, and longitudinal correlation length .

In this short paper, I will focus on three systems for which the critical behavior

associated with the unbinding transitions can be determined exactly: (i) two inter-

faces in interacting with a direct interaction [4-6]; (ii) the

necklace model for interfaces in [7-9]; and ( i i i ) two interacting strings in

[10]. In all cases, one finds that the critical behavior is nonuniversal and

that the critical exponents depend on the parameters of the model. However, the crit-

ical singularities are identical for all three models provided one makes an appropriate

identification of the model parameters, see relations (10) and (14) below.

2. Two interfaces or domain walls in

First, let us consider two interfaces or domain walls in which (i) are, on

average, parallel to a reference line with coordinate , and (ii) have a finite interfacial

tension. Their local separation, , is then governed by the effective Hamiltonian

(1)

where is an appropriate interfacial stiffness and represents the direct interac-

tion. This interaction is taken to behave as

(2)

The model as given by (1) and (2) can be studied by transfer matrix methods

[11,4]. This leads to a one-dimensional Schrödinger-type equation for which the in-

teraction plays the role of a quantum-mechanical potential. It is convenient to

consider the dimensionless interaction , where is a micro-

scopic scale which characterizes the short-ranged part of . The asymptotic behav-

ior in (2) then implies

(3)
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irrespective of the choice of . Now, three cases must be distinguished: ( i ) for ,

there is no unbinding transition since there is always an infinite number of bound

states; ( i i) As is approached from above, the two interfaces undergo an unbind-

ing transition of infinite order provided the short-ranged part of is not capable

of binding the two interfaces; at this transition, the longitudinal correlation length, ,

behaves as [11]

(4)

and the mean separation scales as with ; and (iii) finally, for ,

there is a line of unbinding transitions characterized by dependent critical expo-

nents. At these transitions, the longitudinal correlation length diverges as [4]

(5)

with

(6)

The singular part, , of the interfacial free energy per unit length behaves as

to leading order. Therefore, the interfacial energy, is con-

tinuous for but discontinuous for . The transfer-matrix method can

also be used to determine the correction terms to the free energy. For , one

obtains a singular contribution, , which scales as

(7)

The different character of the unbinding transition for and can be

seen more clearly if one considers the moments, . One then finds that

(8)

where is the probability that the interfacial separation is of the order of .

The relation (8) holds for all . In the limit of large , the probability scales

as [10]

(9)

with as in (7). Therefore, interfacial humps with wavelength have a transverse

extension with for all values of . However, the behavior of as

given by (9) implies that these humps represent typical fluctuations for

but exceptional fluctuations for . In the latter case, two humps as in fig. 1

are separated by a weakly fluctuating segment of linear size

The case corresponds to all interactions which decay faster than for large
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. This is a rather large class of interaction potentials. The corresponding critical be-

havior is universal with , and as follows from (6), (8), and (9) for  

_

 

The critical behavior just described has been obtained from an explicit solution of

the Schrödinger-type equation for specific interaction potentials . In addition, a

discretized version of the model (3) has been studied by a decimation-type renor-

malization group (RG) which represents an exact functional renormalization of the

interaction [12,5,6].

This exact RG acts in the enlarged function space of interactions, , with the

initial value ]. It exhibits a line of fixed points, ,

which depends only on the product [5,6]. For small , the

fixed points exhibit a logarithmic singularity. In terms of the rescaled potential

which involves the lattice parameter , one has

for small . The strength of this singularity, which

satisfies , can be used to parametrize the line of fixed points. The tails of

the fixed points behave as for large with

(Note that for large implies for large for any choice

of  and  ).

Since , the fixed point line has a parabolic character and exhibits two

branches as first predicted from an approximate functional RG scheme [13]. One

branch with and corresponds to unbound states of the interfaces.

The other branch with governs the unbinding transitions and thus leads to

the critical behavior as given by (5) and (6) for . The latter branch ends

at and . For , one finds a separatrix for the RG flow which repre-

sents an analytic continuation of the fixed-point line. The limiting fixed point at

is identical, for , with the fixed point at . The latter fixed point belongs to

the other branch of unbound states. In this way, the line of fixed points contains a

closed loop in function space [5,6].

3. The necklace model for interfaces in

The behavior of several interfaces or domain walls in interacting with a

contact potential can be studied in the framework of the necklace model [7-9]. In

this model, one considers all configurations of interfaces which consist of a string of

alternating segments, say A and B: In the A segments, all interfaces are strongly

bound together; in the B segments, all interfaces are unbound from one another.

Fisher and Gelfand [9] have recently studied the necklace model for three dissim-

ilar interfaces with different stiffness constants. They found that the critical behavior

at the unbinding transition is nonuniversal depending on these constants and that this

critical behavior is analogous to the behavior found for two interfaces as discussed in
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section 2 above.

Here, I want to point out that such a correspondence also applies to the necklace

model with similar interfaces with identical stiffness constants. In the latter case,

the necklace model has the following features [7, 8]: (i) there is no transition for

for the longitudinal correlation length diverges with the

critical exponent ; and (iii) for the interfacial energy is discon-

tinuous but the free energy exhibits a singular correction term,

This is identical with the critical behavior as given by (5) - (7) provided w is replaced

by

Thus, the unbinding transition for the necklace model with sim-

ilar interfaces has the same critical singularities as the unbinding transition of two

interfaces with an interaction,

(10)

4. Two strings in

Now, let us consider two interacting strings governed by a finite tension in

These strings have tangent vectors which point, on average, into the direction. Their

relative displacement is described by the -dimensional vector The

configurations of this displacement vector are governed by the effective Hamiltonian

(11)

where describes the mutual interaction of the strings. For the model

as given by (11) reduces to the Hamiltonian in (1).

It is again convenient to use the rescaled potential with

The transfer matrix method then leads to a Schrödinger-type equation with

the potential [10]

(12)

with

(13)

The additional term arises from the angular fluctuations of the displace-

ment field. For large , the amplitude is increasing with which reflects the

fact that the two strings have more and more space into which they can escape.

If the reduced interaction between the strings behaves as for large

the critical behavior at the unbinding transition is again described by (4) - (9) with
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w replaced by

For and for one has from (13). Thus, the critical behavior

is identical for these two values of with The case then corre-

sponds to the large universality class of interactions which decay faster than for

large z.
For general (i.e., for and the large class of string interactions

with is characterized by In this case, one obtains from (14) and

(7) that

(14)

(15)

Since now corresponds to the probability as given by (9) be-

haves as

(16)

which applies to all string interactions which decay faster than for large For

large or small , the probability as given by (16) has an essential singularity

which cannot be obtained from a perturbative expansion in powers of

It would be instructive to obtain the above critical behavior from the exact func-

tional RG discussed in section 2. As a result, one must find a shift of the line of fixed

points which reflects the shift of by in (14). In addition, one has to recover

the parametrization for this fixed-point line in where gov-

erns the behavior of the fixed points for small separations, see section 2 above. The

simplest parametrization which is consistent with these requirements is given by

5. Summary and outlook

In summary, the critical behavior of two interacting manifolds in is well

understood. First, consider a fixed value of Then all interaction potentials

which decay as for large form a separate universality

class for each value of (provided . In the framework of the RG,

these universality classes correspond to a line of nontrivial RG fixed points. Next, let

us consider two values of , say and and the corresponding universality

classes parametrized by and One then finds from (14) that there is a one-to-

one relation between the two sets of universality classes which is given by

In this sense, the critical behavior is governed by the same

line of fixed points for any value of

Likewise, the necklace model for (similar) interfaces, which interact with a con-
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tact interaction, exhibits the same critical behavior as two interfaces interacting with

with as given by (10). This value of should be shifted if one

includes power law interactions between two neighboring interfaces

but this has not been studied so far.

The above systems can be generalized in various ways. In , one may con-

sider manifolds which are governed by a roughness exponent . Examples are pro-

vided, for thermally excited shape fluctuations, by interfaces in quasi-periodic sys-

tems or by semi-flexible polymers. Furthermore, one may study manifolds in

with . Important examples are two-dimensional interfaces and

membranes.

For the case of two manifolds in , approximate functional RG transfor-

mations have been applied [3] which again lead to lines of RG fixed points [13,14].

In fact, one finds a different fixed-point line for each value of . In view of the

results for and , it is tempting to speculate that, for fixed , the same fixed-

point line will govern the critical behavior for two or more manifolds and arbitrary

, but this remains to be shown.
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