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ABSTRACT. The multitude of critical phenomena which occur at surfaces and interfaces 
is briefly reviewed from a theoretical point of view. Three types of critical effects are dis- 
tinguished related (i) to the 2-dimensional character of the interface, (ii) to its morphology, 
and (iii) to its structural changes at phase transitions in the bulk. Wetting phenomena 
in three dimensions belong to the last category (iii). Some recent theoretical results for 
such phenomena are also discussed: (a) Wetting of a moving interface; (b) Wetting in the 
3-dimensional Ising model; and (c) Wetting of an inhomogeneous substrate. 

1. Introduction 

During the last decade, a lot of effort has been devoted to the study of critical 
phenomena at surfaces and interfaces. Here and below, the term surface denotes the 
interface between a condensed phase and an inert vapor or 'vacuum'. Since the latter 
phase is transparent to most experimental probes, many experimental techniques 
have been used to study surface critical phenomena. However, from a theoretical 
point of view, there is no fundamental difference between a surface and any other 
interface between two thermodynamic phases. 

One intriguing aspect of interfaces is their reduced dimensionality. Indeed, in many 
cases, the interface can simply be viewed as a planar 2-dimensional system. However, 
it can also 'bulge' into the third dimension and then attain nonplanar morphologies. 
In addition, the interface itself has a third dimension which can become mesoscopic 
as in wetting phenomena; one then has a system which interpolates between two and 
three dimensions. 

In this paper, I will briefly review the multitude of critical phenomena which can 
occur at surfaces and interfaces. Three different categories of such phenomena will be 
distinguished: (i) Critical behavior within the 2-dimensional interface; (5) Critical 
effects related to the morphology of interfaces; and (iii) Changes in the interfacial 
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structure as one of the adjacent bulk phases undergoes a phase transition. 
Wetting processes such as, e.g., surface melting or surface-induced order and 

disorder belong to the last category (iii). Some recent theoretical results for these 
processes will also be discussed: (a) Wetting of a moving interface - An example 
is surface melting of a crystal which slowly evaporates. It is shown that the wetting 
layer thickens as a result of this motion; (b) Wetting in the 3-dimensional Iszng model 
- In this case, thermally excited shape fluctuations of the two interfaces bounding 
the wetting layer should be important. Until very recently, computer simulations 
gave no evidence for such fluctuation effects. It is argued here that the interfacial 
fluctuations observed in the simulations are presumably spikes rather than smooth 
deformations; and (c) Wetting of an inhomogeneous substrate - If one of the phases 
consists of an inhomogeneous solid, the wetting layer experiences a random substrate 
potential which leads to an increase of the interfacial roughness. 

2. Critical behavior within the 2-dimensional interface 

2.1 MULTITUDE OF 2-DIMENSIONAL PHASES AND PHASE TRANSITIONS 

Usually, the interface between two 3-dimensional phases has a thickness with is set 
by the scale of the molecules. It then represents a 2-dimensional subsystem which 
exhibits a variety of phases and associated phase transitions. Consider, e.g., a mono- 
layer of adatoms adsorbed onto the surface of a 3-dimensional liquid or solid. Such 
a layer often exhibits a 2-dimensional vapor, liquid, and solid phase. In general, the 
molecules possess internal degrees of freedom which can order and then lead to ad- 
ditional phases. Examples are the liquid crystalline phases of amphiphilic molecules 
adsorbed at the water-air interface. If the substrate is a crystal, these 2-dimensional 
layer phases within the adsorbed layer can be commensurate or incommensurate with 
this substrate. 

The multitude of phases leads to a multitude of critical phenomena. A well- 
known example is the critical point of the 2-dimensional vapor liquid coexistence 
curve; the associated critical behavior should belong to the universality class of the 
2-dimensional Ising model as confirmed in many experiments. Critical effects can 
also occur at discontinuous phase transitions. One example is provided by wetting 
phenomena such as edge melting which occurs as the 2-dimensional triple point 
is approached along the solid-vapor coexistence curve, see Fig. 1. In this case, 
the monolayer contains solid domains surrounded by vapor. As the triple-point 
temperature is approached, the edges of these domains start to melt and the domain 
boundaries contain stripes of the 2-dimensional liquid phase. 

Another type of transition occurs when a commensurate state of the monolayer 
is transformed into a (weakly) incommensurate one. The latter state consists of 
commensurate domains separated by 1-dimensional domain boundaries. 



Figure 1: (left) A typical phase diagram for an adsorbed monolayer - The 2- 
dimensional vapor, liquid, and solid phases are denoted by a ,  6 ,  and 7 ,  respectively. 
When the triple point temperature T = Tt is approached along the broken line, the 
monolayer consists of solid domains, 7, surrounded by vapor, a; (right) Edge melting 
near the triple point. - The solid domains start to  melt along their edges. 

The critical effects associated with wetting and commensurate-incommensurate 
transitions are governed by the behavior of the domain boundaries. This behavior is 
in itself quite interesting and will be discussed in the next two subsections. 

2.2 ROUGHNESS OF DOMAIN BOUNDARIES 

First, consider a single domain boundary separating two 2-dimensional domains. In 
equilibrium, the morphology of this domain boundary reflects the underlying sym- 
metry of the system 111. The following cases have been studied theoretically in some 
detail: (a) Periodic systems - In this case, the domain boundary is flat or smooth at 
T = 0. At T > 0, it makes transverse excursions Ll which grow with the longitudinal 
extension, Ln,  of the domain boundary. More precisely, one has the scaling law 

with the roughness exponent < = 112; (b) Quasi-periodic systems - In this case, 
the behavior in non-universal and depends on the model parameters 12-41. If the 
domain boundary feels an effective Fibonacci potential, it is rough at all T but the 
roughness exponent < is T-dependent and satisfies ( 5; 112; if it feels an effective 
Harper's potential, the domain boundary undergoes a morphological transition from 
a smooth state at low T to a rough state at large T ;  and (c) Systems with quenched 
randomness - In this case, the domain boundary feels a random potential. It then 
roughens in order to  adapt its shape to the random potential and, thus, to minimize 



its energy. As a result, these systems are characterized by an increased roughness 
exponent: for random field and random bond systems, the scaling law (1) holds again 
but with ( = 1 (Ref. /5,6/) and <Â = 213 (Ref. /7,8/) respectively; and (d) Kinetic 
roughening - Away from equilibrium, growth or shrinkage of the domains implies 
a moving domain boundary. Various models with local deposition or evaporation 
rules have recently been studied which lead to a kinetic roughening of the domain 
boundary 191. 

2.3 FLUCTUATION-INDUCED REPULSION BETWEEN DOMAIN BOUNDARIES 

Next, consider two domain boundaries which are, on average, parallel and have sepa- 
ration, i .  The roughness of these boundaries leads to  an effective fluctuation-induced 
repulsion, VFL, with 

VFL(~) l/eT for large i (2) 

where Vp̂  represents a free energy per unit length. Two cases must be distinguished: 
(i) If the shape fluctuations are thermally excited with (, < 112, this repulsion arises 
from a loss of entropy since the configurations of each domain boundary are con- 
strained by the presence of the other one, and 

as applies to periodic and quasiperiodic systems; / l o /  and (ii) For systems with 
quenched impurities with ( 2 112, on the other hand, this repulsion arises from an 
increase in energy since each domain boundary cannot explore the minima of the 
random potential, which lie beyond the other domain boundary, and / l l , l /  

The heuristic concept of a fluctuation-induced interaction just described can be used 
to determine the correct critical exponents for some wetting phenomena such as edge 
melting and for commensurate-incommensurate transitions. 

Edge melting provides an example for complete wetting. In this case, the wetting 
layer contains a metastable phase, denoted by f3 in Fig. 1. Then, in the absence of 
shape fluctuations, the free energy per unit length of this f3 layer has the generic form 

where the pressure-like variable H is proportional to the difference, fg - fay, of the 
bulk free energies of the metastable f3 phase and the stable phases denoted by a 
and 7 in Fig. 1. The direct interaction, VDI(i), reflects the underlying molecular 
forces such as van der Waals, electrostatic, or structural forces and decays to  zero for 
large i .  For example, if the adatoms interact via (nonretarded) van der Wads forces, 
VDI(i) - l/i3 for large i. 



I l l  

Now, the dependence of the mean separation, ( i ) ,  on H can simply be obtained 
by minimization of the free energy A/([) = Hi + Vi)i(i) + V'L(i). Then, two different 
scaling regimes or universality classes can be distinguished: (i) If Vy^(l) <C Void)  
for large t ,  the fluctuations do not affect the behavior of (1) for small H ;  and (ii) If 
V F N  > VDI(!!) for large i, minimization of A f (1) Ã He + VFL(i) leads to  

(e) - I/H* with 4 = I/(! + T) (6) 

where T depends on the roughness exponent ( via (3) and (4). 
In the latter case, the surface free energy has a singular contribution f, ĉ  H ( i )  - 

H 1 *  which implies the surface specific heat 

c, - H"" with a = 1 + V> = (2 + ~ ) / ( l +  r )  . (7) 

If the adatoms interact via van der Wads forces and the domain boundaries have the 
roughness exponent ( = 112, the relation (7) applies and leads to  the specific heat 
exponent a = 413 for edge melting. 1121 Experiments on Neon monolayer gave clear 
evidence for such a melting process. 1131 The data were fitted with a ĉ  514 which 
could indicate a crossover effect arising from a relatively large edge stiffness. / I /  

A similar line of arguments can be used in order to determine the critical behavior 
at continuous commensurate-incommensurate transitions. 1141 If n 111 denotes 
the density of the domain boundaries, the free energy per unit area, A F ( i ) ,  of the 
incommensurate state is given by 

where A p  is the effective chemical potential for the domain boundary. Then, if 
1 VDfl  \< VFL(t) for large t, minimization of (8) with respect to  i leads to  /ll/ 

( l )  - 1 / ~ @  with /3 = I/T . (9) 

So far, the critical behavior of the domain boundaries has been determined by 
simple superposition of the direct interaction, VDr, and the fluctuation-induced in- 
teraction, VFL. Such an heuristic approach is, however, not valid in general. One 
important class of critical phenomena for which this approach fails are wetting tran- 
sitions for sufficiently-short ranged interactions which satisfy VD@) Ã -W/P for 
large t ,  where W can be negative, zero, or positive. In this case, the interaction is 
renormalized in a nontrivial way. For periodic systems characterized by ( = 112 and 
T = 2, this renormalization can be studied by transfer matrix 1151 and exact func- 
tional renormalization group 1161 methods. In this way, a complete classification of 
wetting transitions in two dimensions has been obtained. 1171 In real systems, such 
wetting transitions could occur along the steps of vicinal surfaces as has recently been 
studied in Monte Carlo simulations. 1181 



3. Critical effects related to the morphology of interfaces 

3.1 ROUGHNESS O F  INTERFACES 

The morphology of 2-dimensional interfaces in three dimensions is completely anal- 
ogous to the behavior of 1-dimensional domain boundaries discussed in the previous 
subsection. Thus, the following cases can again be distinguished: (i) Periodic systems 
- The surface of a periodic crystal is smooth at sufficiently low T but undergoes 
a morphological transition to a rough state at a characteristic roughening tempera- 
ture, T = TR. 1191 The roughness is, however, only logarithmic for T > TR with 
Lj_ [ l n ( ( ~ ~ ~ / a ) ] ~ ^ ;  (ii) Quasi-periodic crystals - The surface of an ideal qua- 
sicrystal is predicted to be smooth for all T 110.41. This conclusion is based on 
renormalization group calculations of interface models; (iii) Systems with quenched 
disorder- In this case, the 2-dimensional interface is presumably always rough with 
roughness exponent ( > 0. This behavior should also apply to an interface in a ran- 
dom quasicrystal 1101; and (iv) Kinetic roughening - Local deposition rules again 
lead to an increased roughness of the moving interface and typically to an increased 
value of C. In addition, various morphological transitions between two different rough 
states of the interface have been predicted 191. 

3.2 EDGE O F  A CRYSTAL FACET 

Another aspect of the morphology which is governed by fluctuations is the singular 
behavior of the equilibrium crystal shape which occurs near the edge of a facet. At 
such an edge, the facet often meets a rounded part composed of terraces and steps, 
see Fig. 2. Let z(x) describe this shape: the facet is given by z(x) = 0 for x < 0 and 
the edge of this facet is at x = 0. Now, the excess free energy of the rounded part 
arising from the steps can again be estimated as in (8) where n w 1 ft d.z/dx and 
the effective chemical potential Ap - x. It then follows from (9) that dz/dx x^ or 

1101 
z xA with A = 1 + I /T ( lo)  

for small x where the exponent r as given by (3) or (4) arises from the roughness of 
the 1-d steps. Therefore, the scaling relation A = 1 + I/T connects the 2d properties 
of the interface to its 3d morphology. For a periodic crystal, one has r = 2 and thus 
A = 312 as has experimentally been observed, e.g., for small lead crystals. 1201 



(a) STEP 

TERRA! 
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Figure 2: Edge of a crystal facet - (a) On a microscopic scale, the rounded part . . 
consists of terraces separated by steps which are, on average parallel to  the facet edge; 
(b) On a macroscopic scale, the rounded part is described by the contour z(x) - xA 
with A as given in (10). 

4. Interfacial structure at phase transformations in the bulk 

When one of the two bulk phases adjacent to the interface undergoes a phase transi- 
tion, the interface aquires characteristic density profiles. To be more specific, let us 
consider a crystal-vapor interface, i.e., the surface of a crystal. 

4.1 CONTINUOUS PHASE TRANSITIONS 

The bulk crystal may undergo a variety of continuous phase transitions. If this 
transition belongs to the universality class of the 3-dimensional Ising model, one 
can distinguish three types of surface behavior 121-231: (i) If the coupling constant, 
Jl, between two "spins" within the surface is smaller than the coupling constant, 
J, for two "spins" in the bulk, the system undergoes an 'ordinary transition' at the 
bulk critical temperature T = Tc at which both bulk and surface become ordered 
simultaneously; (ii) If Jl is large compared to J, the surface undergoes a 'surface 
transition' at Tcl > Tc while the bulk undergoes an 'extraordinary transition' at 



T = Tc, and (iii) Finally, for a certain intermediate ratio JJJ, bulk and surface 
simultaneously undergo the so-called 'special transition'. 

4.2 DISCONTINUOUS PHASE TRANSITIONS 

Now, consider again the interface between a crystalline phase, 7, and a vapor phase, 
a, but assume that the crystal undergoes a discontinuous phase transition between a 
disordered phase at high temperature and several odered phases at low temperature. 
Then, a third phase, 13, appears which may prefer to go into the (a7) interface and 
then forms a thin wetting layer. Two cases may be distinguished: as the transition 
temperature is approached (i) from below or (ii) from above, a thin layer (i) of the 
disordered phase or (ii) of one of the ordered phases can be induced by the surface. 
124-281 Alternatively, if both bulk phases a and 7 are in chemical equilibrium, wetting 
by the f3 phase may occur as one approaches a triple point at which all three phases 
a, j3 and 7 coexist. The latter case is schematically shown in Fig. 3. 

INCOMPLETE COMPLETE 

Figure 3: Wetting, surface melting, and related phenomena.- When the ( 4 7 )  triple 
point is approached along the (cry) coexistence line (left diagram), the (a7) interface 
may be (in)completely wet by the f3 phase. Incomplete and complete wetting corre- 
sponds to the formation of droplets and a thin wetting layer, respectively. The layer 
thickness is denoted by 1. 

Wetting has to be distinguished from heterogeneous nucleation even though the 
nucleation barrier is intimately related to the wetting properties. Indeed, heteroge- 
neous nucleation at the interface occurs when the system has passed the triple point 
and the bulk phases, a and 7, (or at least one of them) have become thermody- 
namically unstable. The energy barrier for nucleation of j3 droplets is reduced at 



the interface. For complete wetting, this barrier is, in fact, reduced to  zero, and the 
transformation into the stable /3 phase will start at the interface or surface. 

When the (wy) interface contains a wetting layer of phase, it splits up into an 
a/3) and a (/37) interface. The separation, I >_ 0, of these two interfaces is equal to 
the thickness of the wetting layer. Likewise, the excess free energy, V(S), of the layer 
can be regarded as an effective interaction between these interfaces. 

In the absence of interfacial fluctuations, the interaction V(I) has the same generic 
form V(S) = H l +  VDI(S) as for domain boundaries, see (5). This interaction is again 
renormalized by shape fluctuations of the interfaces even though this renormalization 
is less effective in d = 3 than in d = 2. The influence of interfacial fluctuations is 
studied most conveniently within the framework of effective models for the interfacial 
separation l >_ 0. For wetting in three dimensions, these models have the generic 
form / I /  

where S is an appropriate interfacial stiffness. A hard wall potential at i = 0 which 
ensures S > 0 is implicitly assumed. In what follows, I will study three different 
situations which correspond to three different interactions, VDI(S). 

4.3 WETTING PHENOMENA IN THREE DIMENSIONS: SOME RECENT 
THEORETICAL RESULTS 

4.3.1 Wetting away from equilibrium: a moving wetting layer is thicker. First, con- 
sider an (a7) interface which moves with constant velocity. An example is a crystal 
in ultra-high vacuum which slowly evaporates. Now, assume that this interface con- 
tains a thin wetting layer. The question is: does the motion of the interface affect 
the thickness of the layer? 

This question can be addressed in the framework of Landau models or density 
functional theories which lead to density profiles, M(z, t ) ,  where z is the coordinate 
perpendicular to the (a7) interface and t is the time. Let us assume that the motion of 
the interface is not limited by diffusion. One may then consider a simple relaxational 
dynamics for the densities 129-311. This leads to solutions M(z, t )  = f ( z  - v t )  which 
move with constant velocity v. 

The behavior of the densities can be used in order to construct the interaction 
V(S) acting between the (ap) and the ((37) interface. As a result, one finds a shift of 
the pressure-like variable H  and the direct interaction 1301 

where the two length scales are given by 



with x = v/vp. The parameter vp is a velocity scale which depends on the mobility 
within the (3 layer. The length scale i$ is the bulk correlation length within the (3 
phase. If the wetting layer does not move, one has x = v/vg = 0, and t1 = (g = 2t2. 
In general, the scale el increases with increasing velocity. If one ignores the possible 
effects of shape fluctuations, the expectation value, (l), is determined by the minimum 
of VDi(t) + He. It then follows that the motion of the interface leads to  a thickening 
of the wetting layer 1301. 

4.3.2 Wetting in the 3-dimensional Ising model: is it dominated by spikes? Next, 
consider the Ising model on a simple cubic lattice with a (100) surface. The "spins" 
interact with nearest-neighbor couplings, J, and are subject to  a short-ranged sur- 
face field. This model exhibits critical wetting transitions which have extensively 
been studied in Monte Carlo simulations 1321. However, the critical behavior of 
these transitions is not well-understood. Until very recently, the simulations within 
the Ising model were thought to be consistent with mean-field theory. In contrast, 
linearized renormalization group calculations of effective interface models with 

predicted nonuniversal critical behavior depending on the parameter w = ~ / 4 7 r E t i  
where 9 is the interfacial stiffness as in (11). 133,341 

In order to  address this controversy, we have studied the solid-on-solid (SOS) 
limit of the 3-dimensional Ising model by Monte Carlo simulations. 1351 A detailed 
analysis of the MC data revealed that the SOS model belongs to  the same universality 
class as the Gaussian model given by (11) provided (i) one accepts the results of linear 
renormalization, and (ii) one makes a proper identification of the model parameters. 
The reduced stiffness of the SOS model has the value SIT = c1(J/Ta)' with el 3 
10.4, and the direct interaction has the form (14) with to = ( = c2aT / J  and c2 3 
0.175. As a consequence, the parameter ui = ~ /41 r% has the universal value w % 114 
for the SOS limit of the 3-dimensional Ising model. 1351 

The direct interaction (14) for the Ising model can be derived from mean-field 
theory for the order parameter density /33,36,37/. In this derivation, the length scale 
to is identical with the bulk correlation length f,s within the (3 layer as follows from 
(12) and (13) for x = v/vp = 0. The SOS model does not include any bubbles or 
interfacial overhangs and thus does not contain information about the bulk correlation 
length. Therefore, the length scale f cannot be identical with the bulk correlation 
length. However, this length scale has another rather direct interpretation in terms of 
interfacial spikes. Thus, consider two planar interfaces at separation t and introduce 
an interfacial fluctuation which consists simply of a column of reversed spins bridging 
the gap between the two interfaces. Such a fluctuation has an energy A E  = 8 J l / a  
and thus a Boltzmann weight - exp(-8JtIaT) ignoring entropic effects. Therefore, 
these spikes are governed by the length scale f s p  = 0.125aT/J which is comparable 
to the scale ( determined in the simulations. 



Thus, one may distinguish two different types of shape fluctuations of the interface: 
(i) smooth deformations of the mean-field profile, and (ii) abrupt spikes in the form of 
thin fingers. In both cases, the critical behavior resulting from the shape fluctuations 
can be described by an effective Gaussian model as in (11) with a direct interaction 
as in (14) but with different length scales lo. The question now is: which type of 
shape fluctuation is typical for critical wetting in the 3-dimensional Ising model? 

For JIT = 0.35, ( as found in our simulations is about twice as large as the 
generally accepted value for the bulk correlation length ^g. 1351 In this case, spikes 
should dominate and w E 114. This conclusion is consistent with a recent analysis of 
the MC data for the 3-dimensional Ising model 1381. This analysis is based on the 
amplitude ratio for the interfacial susceptibility xI and leads to  the estimate w r̂ . 0.3 
which is rather close to  the value w E 114 obtained for the SOS model. 

4.3.3 Wetting of an inhomogeneous substrate: lateral disorder translates into inter- 
facial roughness. Finally, consider wetting of a smooth solid substrate which has an 
inhomogeneous composition and thus exerts an effective interaction with a random 
component. /39/ The corresponding direct interaction is taken to be 

The first term, V f l ,  and the second term, -Wv(f) with W > 0, describe the 
repulsive and the attractive part of VDI, respectively. The third term, -Wrv(e), 
corresponds to the random component of VDI where Wr is a quenched random variable 
with zero mean value, = 0. The potential v(t) is taken to behave as v(t) - l/la 
for large t; (non-retarded) van der Wads forces are described by s = 2. 

For complete wetting with W = 0, the ( a p )  interface unbinds from the substrate 
as the pressure-like variable H in (5) goes to zero. Alternatively, this interface 
undergoes a critical wetting transition at ( a p )  coexistence with H = 0 in the limit 
of zero W. For a relatively thick wetting layer, the interfacial fluctuations are now 
characterized by LL w L'\ with C, = l / (2+a)  which arises from the random component 
of the substrate potential. /40/ This increased roughness affects the mean separation 
< t > of the (ap) interface from the substrate provided VpW decays faster than l/tT 
with T = 2(1 +s) .  In the latter situation, one has < t >- l/H^ with $Jc = 1/(3+2s)  
for complete wetting and < t >w l / W ^  with $J = 1/(2 + a) for critical wetting. 

5 .  Summary and outlook 

In summary, the multitude of critical phenomena which occur at surfaces and inter- 
faces has briefly been reviewed from the theoretical point of view. These phenomena 
may be divided up into three large classes: (i) Critical behavior within the interface, 
i.e., critical phenomena in two dimensions. An example is provided by edge melting, 
see Fig. 1; (ii) Critical aspects of the interfacial morphology, see, e.g., Fig. 2; and (iii) 



Critical changes in the interfacial structure which are induced by phase transitions 
in the adjacent bulk phases. If this phase transition is discontinuous, the system can 
exhibit wetting phenomena, see Fig. 3. 

This research field still poses many theoretical challenges. For example, surfaces 
of ideal quasicrystals have been theoretically predicted to be always smooth. Real 
quasicrystals, on the other hand, usually contain a certain amount of disorder which 
acts to roughen these surfaces. / l o /  Another area with many open problems is the 
kinetic roughening of surfaces. A variety of theoretical models with local growth rules 
has recently been introduced and studied. /9/ These studies should be useful in order 
to understand real growth of solids from the vapor phase as, e.g., in molecular-beam 
epitaxy. 

On the experimental side, new tools have been recently developed such as surface- 
sensitive x-ray and neutron scattering. /41/ Two different methods have been suc- 
cessfully applied: (i) reflectivity measurements (see, e.g., /42/), and (ii) scattering 
under total external reflection (see, e.g., 1271). With these methods, one can ex- 
perimentally study structural changes of the interface on the nm scale such as, e.g., 
wetting or surface-induced nucleation phenomena. 

The surfaces considered in this paper are interfaces between two different bulk 
phases. Finally, I want to mention another type of surfaces, namely membranes 
which consist of ultra-thin sheets of molecules. It is interesting to note that these 
membranes exhibit critical behavior which is rather similar to the critical phenomena 
described here. 1431 
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