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Summary: Two introductory sections describe different aspects of membranes and give a 
short history of membrane research. The main part of this paper is concerned with (i) the 
morphology of vesicles and (ii) the adhesion and interaction of membranes.[l] The morphology 
of vesicles can be understood in the framework of curvature models. One particularly intriguing 
class of shape transformations are budding or invagination phenomena. Adhesion of membranes 
leads to additional shape transformation and to unbinding transitions driven by thermally- 
excited shape fluctuations. For two interacting surfaces, one has a whole line of nontrivial 
transitions. Recent theoretical work indicates that such a line also governs the unbinding for 
bunches of more than two membranes. 

1 Introduction 

The structure of matter is determined by the interplay of energy and entropy 
which usually favors order and disorder, respectively.' At low temperatures, 
energy dominates and the forces between the molecules lead to highly ordered 
crystalline states. At high temperatures, entropy dominates and the molecules 
form a disordered gas. 
However, the world around us (and within us!) is full of soft  m a t t e r  or complex 
fluids which are governed by a real competition between energy and entropy. 
Examples for complex fluids are liquid crystals, polymer systems, gels, adhesives, 
colloids, soaps, microemulsions etc. In addition, all biological systems belong to 
this category. 
The membranes considered here represent important structural elements for many 
complex fluids. In addition, these membranes separate the different compart- 
ments of biological systems and, thus, are responsible for the complex architecture 
of these systems. An example for this architecture is shown in Fig. 1. 
In view of the ubiquity of membranes, it is not surprising that a large number 
of scientists from different disciplines is involved in their study. Even within the 
relatively small group of physicists, there are several communities which focus on 
different aspects of membranes. These aspects will be briefly summarized in the 
next section. 

'The entropy of one subsystem can induce order in another subsystem as discussed below 
for the hydrophobic effect. 



Fig. 1 I11 spite of its complex topology, the membrane bounding the Golgi-apparatus forms 

a closed surface without edges. 

2 Different aspects of membranes 

2.1 From micelles to  bilayers 

When viewed with the eyes of the chemical physicist, the membranes considered 
here are assemblies or aggregates of molecules which have the form of very thin 
sheets. In the following, I will focus on membranes composed of amphiphilic 
molecules such as lipids or surfactants. 
In aqueous solution, arnphiphilic molecules can form a large variety of different 
thermodynamic phases. The driving force behind the assembly of these different 
structures is the so-called hydrophobic effect.[2] A lipid molecule, for example, has 
a polar head group which is hydrophilic and two nonpolar hydrocarbon chains 
which are are hydrophobic. Water prefers to  be in contact with the head group 
but tries to avoid any contact with the hydrocarbon chains. Therefore, the am- 
phiphilic molecules arrange themselves in such a way that the heads shield the 
chains from the surrounding water. 
It is now generally believed that the hydrophobic effect is mainly of entropic 
origin. A nonpolar hydrocarbon chain in contact with water acts to constrain 
the network of hydrogen bonds and to lower the configurational entropy of the 
surrounding water molecules. Thus, the aggregation of the amphiphilic molecu- 
lar into ordered structures is primarily driven by the associated increase in the 
entropy of water. 
Because of the hydrophobic effect, a disordered 'gas' of amphiphilic monomers 
is only possible at very low concentrations. As soon as the concentration of 
the amphiphile exceeds a certain critical concentration, these monomers start to  
assemble spontaneously. Above this critical concentration, surfactant molecules 
with one nonpolar tail usually form spherical or cylindrical micelles. For lipids, 



the critical concentration is typically very low and of the order of 1 molecule per 
pn3.[3] In the latter case, the molecules assemble into bilayers which are covered, 
011 both sides, by the head groups of the lipids. The low value of the critical 
concentration implies that the exchange of molecules between the membrane and 
the surrounding solution is very slow and may be ignored in many situations. 

2.2 From bilayer crystals to vesicles 

At relatively high concentrations, lipid molecules form bilayers which are stacked 
on top of one another into lamellar phases. Within these phases, the bilayers 
are separated by thin layers of water. Thus, the lamellar phase can be diluted 
or swollen by adding water. Within each bilayer, the lipid molecules can exhibit 
a fluid phase at  high temperatures and/or relatively large dilution, in which the 
nonpolar chains of the lipids are disordered, and one or several gel-like phases at  
low temperatures and/or relatively small dilution, in which the chains are rigid 
and form a lattice. For fluid bilayers, the lamellar phase represents a smectic 
liquid crystal. For gel-like bilayers, the lamellar phase could represent a three- 
dimensional crystal.2 
In principle, the separation of the bilayers can reach a maximal value or can 
increase indefinitely depending on the interactions between the bilayers. In prac- 
tise, the interface between the lamellar phase and the aqueous solution often 
undergoes complex changes. For example, the swelling process can lead to the 
formation of tubular structures, so-called myelin figures, in which the bilayers 
form concentric cylinders.3 
Similar swelling procedures are also used in order to produce liposomes or vesicles. , 

Liposomes are onion-like structures in which the bilayers form concentric spheres. 
Unilamellar vesicles, on the other hand, are closed bags bounded by a single 
bilayer. Nowadays, several preparation methods are available by which one can 
obtain giant unilamellar vesicles with a linear size of the order of 10 pm. 
If the bilayer of the vesicle is in the fluid state, it is rather flexible and can easily 
change its shape. The vesicle can then undergo shape transformations such as 
the invagination process shown in Fig. 2.[4-61 

2.3 Biomembranes as complex interfaces 

In the biophysics community, lipid bilayers represent the simplest model systems 
for biomembranes.[7] Indeed, all biomembranes contain a bilayer composed of 
lipids and proteins.[8] 

'The experimental literature seems to be ambiguous on this point. The registry between 
the bilayers is strongly perturbed if the headgroup and the hydrocarbon chains favor different 
two-dimensional lattice structures. 

'Such structures were first observed in 1853 by Virchow for the swelling of various tissues. 



Fig. 2 Shape transformation of a single lipid vesicle induced by a change in temperature. 

The shapes are axisymmetric with respect to the broken lines. The  vesicle has initially the 

discocyte shape of red blood cells (left) and finally consists of a sphere which contains a smaller 

spherical bud (right). 

The main function of these bilayer membranes is to partition space into sepa- 
rate compartments. The membranes form closed surfaces without edges which 
represent highly selective filters maintaining the essential differences between the  
inside and the outside of the various compartments, compare Fig. 1. The prote- 
ins embedded or 'dissolved' in the bilayer mediate a variety of specific functions: 
they form channels used for the transport of small molecules across the mem- 
brane; they act as enzymes which catalyze membrane-associated reactions which 
are rather effective as a result of the two-dimensional geometry; they serve as 
receptors for chemica,l signals; they provide anchors for polymer networks such 
as the cytoslieleton or the extracellular matrix. 

2.4 Engineering of membranes 

Bilayer membranes are also studied as building blocks for a new nano- or micro- 
technology based on soft matter. There are two major areas: (i) vesicles and 
liposomes as de l ivery  systems and (ii) immobilized membranes as part of biosen- 
sors. 
Vesicles and liposomes are currently used as delivery systems in pharmaceutics, 
cosmetics, and genetic engineering. They are especially useful in order to trans- 
port all kinds of chemicals into the skin. Thus, they seem to have a large potential 
to improve the treatment of skin diseases. 
Another more general goal is specific targeting of diseased cells. If these cells 
are macrophages, this goal is easy to achieve since the macrophages treat most 
vesicles just like parasites and rapidly ingest them. In general, this response of 



the immune system creates a major problem, however, since the vesicles are eaten 
up before they can reach their target. Very recently, it has been found that one 
can solve this problem, at least to a certain extent, if the vesicles are covered by 
a coat of polymers. 
As mentioned, biomembranes contain many receptor proteins. These receptors 
bind to specific ligands with high affinity. The binding between receptor and 
ligand produces a signal which can be an ionic current across the membrane, the 
activation of another membrane-bound protein, or, for catalytic receptors, the 
release of another molecule. 
Various attempts are currently made to use receptor proteins as sensing elements 
for biosensors. In general, biosensors are devices which transform chemical signals 
into electric ones. In order to detect a certain biologically active molecule, one 
would like to cover the surface of the detector by the corresponding receptor 
molecule. One obvious way to achieve this is to dissolve the receptors in a lipid 
bilayer membrane which is immobilized on the solid surface. 



4.3 Roughening of fluid and polymerized membranes 

When viewed under the microscope, the membranes of vesicles exhibit thermally- 
excited shape fluctuations. Quite generally, low-dimensional objects such as in- 
terfaces, membranes or polymers undergo such fluctuations in order to increase 
their configurational entropy. A membrane is usually more flexible than an inter- 
face but less flexible than a polymer. It is important to realize, however, that the 
character of its shape fluctuations depends on the internal state of the membrane. 
In addition to the fluid bilayer of lipids and proteins, biomembranes often contain 
2-dimensional networks. One example is the network of clathrin molecules as 
shown in Fig.7. Other examples are (i) the cell wall of bacterial cells which 
contains a peptidoclycan network and (ii) the cytoskeleton in some eucaryotic 
cells such as the spectrin network of red blood cells. These networks provide 
examples for polymerized or solid-like membranes. 
On length scales which are large compared to the meshsize of the network, a 
polymerized membrane can be regarded as a thin elastic sheet. The shape fluc- 
tuations of such a sheet consist both of bending and of stretching modes. In 
contrast, fluid membranes are governed by bending modes alone. 
The shape fluctuations lead to a certain membrane roughness, which is characteri- 
zed by anisotropic humps: a membrane segment of linear size L makes transverse 
excursions of size[23] 

L, - AL^ (6) 

which defines the roughness exponent & see Fig. 8. For fluid membranes with 
bending rigidity K,  one has ( = 1 and A = ( T / K ) ~ ^  at temperature T > 0.1241 
I11 general, one may define an effective scale-independent rigidity I< via A = 
(T/I<)l/' or 

Fig. 8 Rough membrane consisting of anisotropic humps governed by the roughness exponent 

For polymerized membranes, the value of ( is still a matter of some controversy. 
Several simulations of tethered networks with free boundaries gave the estimate 
C = 0.65 z t  0.05. 



In contrast, we have simulated continuum models in which the membrane is 
treated as a solid-like elastic sheet.[25] From these simulations, we concluded 
that the exponent ( is presumably equal to ( = 112. This conclusion was based 
(i) on the assumption that the amplitude A should not depend on the small-scale 
cutoff of the model and (ii) on the empirical observation that the behavior of the 
shape fluctuations does not change significantly for the continuum model in the 
limit of zero (bare) bending rigidity, K = 0. The assumption (i) is consistent with 
the diagrammatic perturbation series of the continuum model. Furthermore, a 
smooth limit for zero K was found for various variants of the continuum model. 
Very recently, Abraham studied tethered nets with periodic boundary conditions 
and found ( 0.53.[26] This is much closer to our value than to previous estimates 
for tethered networks with free boundaries. 
One should note that these results apply to polymerized membranes which are 
planar in the undeformed reference state (e.g. at  zero temperature). If the 
reference state has non-zero (spontaneous) curvature, the shape fluctuations have 
a different character. Indeed, for a polymerized vesicle, stretching and bending 
modes are already coupled at the Gaussian or harmonic level which tends to 
suppress the fluctuations.[27] 

4.4 Coarsening and relaxation of membrane undulations 

Consider a membrane at temperature T which is initially in a flat state away from 
thermal equilibrium. At a later time t,  the membrane has a certain roughness, 
LÂ±(t)  which grows continously with t. This represents a coarsening process of 
the membrane fluctuations: the largest humps which are excited at  time t have 
a wavelength of order L(t) [LÂ±(t)/A]l/  as follows from (6). 
In order to determine the growth law for L l ( t } ,  it is useful to consider a slightly 
different situation in which the roughness of the membrane is confined by a planar 
wall interacting with the membrane.' All shape fluctuations of the free membrane 
that exceed a certain wavelength Lmax are inaccessible to the confined membrane. 
The membrane then suffers a loss of entropy. The corresponding difference, A S  = 
Si, - Sf, between the entropies of the bound and of the free state can be estimated 
by the difference in tlie number of accessible modes. If the membrane has a linear 
size R, the difference in the number of modes scales as -(R/L:nax) in the limit 
of large R. The excess free energy per unit area arising from the confinement is 
then given by [23] 

This repulsive fluctuation-induced interaction leads to the disjoining pressure 

5Tllis is, in fact, the adhesion geometry discussed in Sect. 5 below. 



between the membrane and the wall. 
The relaxational dynamics of Monte Carlo simulations is equivalent t o  [28,23] 

Inserting the expression (9) for Pfi, one obtains the power law behavior [23,29] 

and 
L(t) with 011 = 1/(2 + 2C) (12) 

for the coarsening of the membrane humps. This implies that the equilibration or 
relaxation time, tRi, for humps of wavelength L or wavelength q - 1/L is given 

by [30,251 
tnl - l / * 2 ^  . (13) 

In real systems, the fluctuating membrane may be coupled to overdamped surface 
waves in the aqueous medium which decay as exp(-qz) with the distance z from 
the membrane. These surface waves have a different relaxation time, tm, which 
can be estimated from dimensional analysis. 
On large scales, the elastic response of the membrane is governed by the effective 
(scale-independent) rigidity K = T / d 2  as given by (7). It follows from this 
relation and L1 - A L ^  that A' is an energy/length22C. The energy dissipated 
in the surfa,ce waves within the aqueous medium is governed by the dynamic 
viscosity T ]  which is an (energy x time)/ length3. The only time scale which can 
be obtained from q,  I(, and T ]  is the relaxation time 

Thus, the viscous damping by the fluid decreases the relaxation time on large 
scales. For fluid membranes with I< = K and 0 = 1, one has tny - r f /  tcq3 as 
has been previously obtained by Brochard and Lennon.[24] More recently, the - .  

dynamics of polymerized membranes has been studied by Frey and Nelson [31] 
using a set of coupled Langevin equations. For free draining membranes, they 
recover the relaxation time tRi as given by (13) (which they call Rouse dynamics). 
In addition, they also derive the relaxation time tp2 as in (14) (which they call 
Zimm dynamics). 
Finally, consider again a membrane which is initially flat but is now coupled to 
overdamped surface waves as it develops larger and larger humps. The roughness 
now grows as 

Â £  - toL with OL = ( / ( I  + 20) (15) 

with time t as follows from (14) and L1 - L^ - l /q( .  Thus, the coupling to  
the hydrodynamic flow acts to enhance the coarsening process: in the absence of 
such a coupling, the growth exponent 01  is 01 = C/(2 + 2 0  as in (11) which is 
smaller than the value O1 = C/(l + 2C) as in (15). 
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