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Critical behavior of three interacting strings 
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The unbinding of three strings in a plane which interact via short-ranged attractive potentials is stud- 
ied using both transfer-matrix methods and Monte Carlo techniques. In the symmetric case, for which 
the two outer strings have the same line tension, the critical behavior depends on the relative flexibility 
of the inner string in a nonuniversal fashion. In the asymmetric case, the strings unbind in two suc- 
cessive unbinding transitions at two different temperatures. Renormalization-group arguments predict 
that these results are also applicable to the adhesion and unbinding of three membranes. 

PACS number(s): 64.60. -i, 82.70. - y 

The interactions of one-dimensional strings determine 
the behavior of domain walls in adsorbed monolayers, of 
steps or ledges on the surface of crystals, of vortex lines 
in type-I1 superconductors, and of bundles of rigid poly- 
mers such as double-helical or triple-helical biopolymers. 
Previous theoretical work on interacting strings has been 
primarily concerned with two cases: (i) The unbinding of 
two strings or domain walls which corresponds to wet- 
ting transitions. In this case, both repulsive and attractive 
interactions have been considered, which lead to various 
universality classes [I]. (ii) The unbinding of a large 
number of strings which interact, in this case, with purely 
repulsive interactions as in commensurate- 
incommensurate transitions. In the latter case, the 
strings are bound together by an external field or con- 
straint. 

On the other hand, there are several experimental sys- 
tems in which one looks at the behavior of a bundle of 
more than two strings which also experience both repul- 
sive and attractive interactions. For example, on vicinal 
surfaces, one often has attractive interactions between 
monoatomic steps which lead to multiple-atomic steps 
[2]. Likewise, some biopolymers such as collagen consist 
of three helices which form a bound state. In this case, 
the unbinding transition corresponds to the helix-coil 
transition [3]. 

Another system which has been studied recently con- 
sists of bunches of two-dimensional membranes which are 
bound together by van der Waals forces. In this case, un- 
binding transitions have been observed which were in- 
duced by a change in temperature [4]. In fact, bunches of 
membranes are expected to behave very similarly to bun- 
dles of strings. This is shown, using functional renormal- 
ization, at  the end of this paper. 

In the main part of this paper, we theoretically study 
the unbinding of three strings in two dimensions which 
interact by pairwise attractive and hard-wall repulsive 
forces. We find that this system exhibits a rich phase dia- 
gram, as shown schematically in Fig. l. If the two outer 
strings of the bundle have different line tensions [S], two 
successive transitions are found: first, one string separates 
off from the other two, which then unbind at another 
transition at higher temperature. Both transitions exhibit 

the same critical behavior which is universal and in- 
dependent of the line tensions. In the phase diagram of 
Fig. 1, these two transitions occur at the two sheets 
which intersect at a line of tetracritical points. Along the 
latter line, the two outer strings of the bundle are identi- 
cal. The critical behavior along this line is nonuniversal 
and depends on the ratio of line tensions of the inner and 
the outer strings. 

The critical behavior of three interacting strings has 
been previously studied in an approximate way within the 
necklace model [6,7]. It is predicted that three identical 
strings undergo a discontinuous (or first-order) unbinding 
transition. In contrast, the work presented here clearly 
shows that the transition is in fact continuous (or second 
order) for a wide parameter range including the case of 
three identical strings. 

FIG. 1. The schematic phase diagram for the unbinding of 
three strings with arbitrary line tensions [in subregime (511. At 
the top (for high temperatures or low potential depths), all three 
strings are unbound; conversely, at the bottom, all three strings 
are tightly bound together. The four wings corresponding to 
universal unbinding transitions meet at a tetracritical line, on 
which the critical exponents vary continuously. For 0=7r/2, 
defining the plane containing the solid circle, the critical lines 
meet at a nonzero angle. As one moves back into the diagram 
(for decreasing 0), the scaling dimension of t increases, suggest- 
ing that the critical wings then meet horizontally with a com- 
mon tangent. 
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The effective Hamiltonian for three strings is limit K,. = 00 corresponds to a hard wall. The two mutu- 
2 a1 interactions are chosen to be identical and given by 

~ { l ~ , l ~ , l ~ ] = $ d x  
w for Z<0 

2 
- U  f o r o < l < l 0  

++K3 121 +V(ll-12) T 
(2) 

0 for lo < 1 , 

I 
1 

+V(12-13) . (1) with U > 0, corresponding to an attractive potential well. 
The Hamiltonian can be simplified by an orthogonal 

The strings are, on average, parallel to each other. The transformation [7,8], which extracts the center of mass 
positive line tensions Ka can have different values. The coordinate. The Hamiltonian (1) then becomes 

where the center-of-mass coordinate, which diffuses free- 
ly, has been separated off. Using the ratios of the line 
tensions, denoted by q1 =K1 /K2 and q3 =K3 /K2, the 
angle 6 is given by 

6 = a r ~ t a n ( V / l / ~ ~ + l / ~ ~ ~ ~ + l / ~ ~ )  . (4) 

The problem of three strings in a two-dimensional plane 
with mutual square-well interactions has thus been 
transformed into the problem of one string in a three- 
dimensional wedge, with square-well potentials at the 
boundaries of the wedge. 

For q1 =q3 =0, we get 0=ir/2, and the Hamiltonian 
decouples into two independent problems, which can be 
solved exactly [I]. For three identical strings with 
ql =q^,=l,  we get 6=ir/3; as the inner string becomes 
more flexible, q l  and 03 increase and the angle 6 of the 
wedge decreases. 

We have carried out Monte Carlo (MC) simulations of 
this Hamiltonian for a system consisting of 500 discrete 
sites using the Metropolis algorithm with periodic bound- 
ary conditions. Runs were typically of the order of lo7 
MC steps per site. The mean string separations, 
( 112 ) = ( I l  -I2 ) and ( 123 ) = ( l2 -13 ), were measured, 
where ( ) represents an ensemble average. For the sym- 
metric case, we have ( l n  )=( ); we then 
used ( l ) ~ ( ( l , 2 ) + { l Â ¥ , ^ ) ) / 2  and the roughness {,, was 

determined by evaluating l1= [( ( ) - (I l2 )2)1'2 
+( < 12, ) -(IT, )2)1/2]/2. We also determined the paral- 
lel correlation length S,Ã [9]. 

For the transfer-matrix (TM) calculation, which 
amounts to a numerical iteration of the Schrodinger 
equation corresponding to the Hamiltonian (3), we also 
discretize the coordinates y l  and y2, using 80000 sites. 
This discretization deserves special attention and has to 
be done in accord with several symmetry conditions [9]. 
Using the restricted solid-on-solid approximation 
(RSOS), the Schrodinger equation was iterated 20000 
times using a fully vectorized code, after which we ob- 
tained a stationary probability distribution. From this 

distribution, we calculated the mean string separations 
and the roughness. The energy E y  of the ground state 
can be obtained (up to a constant) via the numerically 
determined eigenvalue of the TM. The parallel correla- 
tion length is then given by glI=T/(E1 -Eo 1, where E l  is 
the energy of the first excited state. The restriction to 
nearest neighbors should not change the critical 
behavior. This is well established for the case 6=ir/2. 
We also confirmed this for the Schrodinger equation cor- 
responding to the necklace model for the angles 
6=ir,ir/2, 2 arctan( $), and 2 arctan(+) by comparing the 
numerically determined critical exponents with those ob- 
tained analytically [9]. 

To study the unbinding transition, we fixed the values 
of Ka /T  and the potential well width l n= l ,  and varied 
the depth of the potential well U, decreasing it toward 
the critical value (7,. The presence of the inner string 
should result in an entropically generated effective poten- 
tial Vs between the two outer strings which is repulsive 
and scales as VR - 1 /I2. Intuitively, it is clear that as one 
increases the ratio of the line tensions of the outer and 
inner strings, the thermal fluctuations of the central 
string increase, leading to an increased amplitude W of 
the repulsive effective potential. Theoretical results for 
the unbinding of two strings in the presence of a repulsive 
potential Vs = w/12 imply that the lengths defined above 
scale as 

where the exponents are found to depend on the rescaled 
amplitude W = ~ K W / T ~  in the following way [ll: for 
subregime ( B ) ,  with 0 <  w <+, the exponents satisfy the 
simple relation t,b = vl= v,, /2 and 
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in subregime ( C ) ,  with ut > $ one has vn= 1 and 
$ < vl < + or discontinuities in ( 1 ) and ̂ . 

First, we report on our results for the symmetric case, 
i.e., q i=q3  Eq ,  where the strings unbind simultaneously. 
The first set of TM calculations has been carried out for 
0=TT/I or q =0, which corresponds to the central string 
being a hard wall. Since this string does not fluctuate, 
the amplitude of the effective repulsive potential has to be 
zero and $=vi=l,  according to (6). The data for the 
three lengths were fitted to a power law using the 
Levenberg-Marquardt method for a three-parameter fit 
[9]. The data, which are shown in a log-log plot in Fig. 
2(a), scale accurately with $= 1.01 k0.01 and 
v, =O. 9950.01, thus confirming the theoretical predic- 
tion with high precision. For fitting the parallel correla- 
tion length t l l ,  we also had to determine the energy E of 
the first excited state; the data are therefore not as reli- 
able and yield v,,= 1.8k0.2, which is to be compared with 
the theoretical prediction v,, =2. 

In addition, we performed eight TM calculations for 
different nonzero values of q. In Fig. 2(b), we show the 
data for q=31.5, which corresponds to an angle of 
0=2  arctan( + 1. The same high accuracy is obtained, 
yielding the exponents $=0.707+0.005 and 
v, =O. 7 1250.005. Thus the effective repulsive potential 
induced by the fluctuations of the inner string actually 
changes the critical behavior. Following (61, one calcu- 

FIG. 2. (a) Transfer-matrix results for K y w  and 
K, = Ki ( q  =0 and 0=1~/2). Data for the parallel correlation 
length GI, the mean separation < I ), and the roughness & are 
shown as a function of the potential depth U. (b) Results for 
K,/K^K^/K^31.5. 

FIG. 3. Monte Carlo results for q = 1.0 and K-, = O .  1 .  Shown 
are data for the roughness (open squares), the parallel correla- 
tion length (closed circles), and the mean separation ( I ) (open 
circles). 

lates the amplitude of this potential to be 
w (q = 3  1.5) ~ 0 . 2 5 ;  the critical behavior still belongs to 
the subregime ( B ) ,  as confirmed by the fact that the two 
exponents are the same within their numerical errors. 

MC simulations have been carried out for 
q = 1 (0='n-/3 1, where all strings have the same line ten- 
sion Ka/T=O. 1. The data, which are shown in Fig. 3, 
yield vl=O. 93kO.05 and v,, = 1.8Â±0.2 thus confirming 
scaling predictions. The mean separation ( I ) does not 
scale as nicely, but approaches the slope of the roughness 

close to the transition. It turns out that the MC simu- 
lation of a single data point in Fig. 3 requires twice as 
much computer time as the calculation of about 100 data 
points in Fig. 2(a), using the TM technique. 

The measured values of i f i  and v, are plotted as a func- 
tion of 6 in Fig. 4. Apart from some deviations which are 
probably due to the presence of crossover effects, the two 
exponents show the same behavior. The MC result 
agrees with the TM results within the error bar. For 
0 = ~ / 2 ,  the exact result (indicated by a cross) is repro- 
duced. For decreasing angle, the exponents decrease. 
For the smallest angle considered here, 6=2 arctan( ), 

0.5- 
0 it/4 0 7112 

FIG. 4. Results for the exponents i f >  (open symbols) and vi 
(filled symbols). The square denotes the Monte Carlo result for 
vi, the circles denote transfer-matrix results. In the latter case, 
the error bars are the size of the symbols. The cross denotes the 
exactly known result for the case 0=tr/2, namely ifi=v,=l. 
The inset shows the results for the necklace model, with discon- 
tinuous transitions for 6 < IT. 
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which corresponds to q =71.5, the border to subregime 
( C ) ,  at which ifr=0.5, has not been reached. In fact, by 
plotting the amplitude of the effective repulsive potential, 
ID, as calculated via (61, as a function of q, we estimate 
from linear extrapolation that the transition to subregime 
( C )  occurs only for q = 130. This gentle change of the 
critical behavior helps to understand very recent MC 
simulations [8], where the unbinding of three membranes 
was found to exhibit critical exponents only slightly 
different from those for two membranes. 

The exponent ifr in the inset of Fig. 4 has been obtained 
using a rigorous solution of the Schrodinger equation cor- 
responding to the necklace model [7,9]. Within the latter 
model, the borderline between subregimes ( B )  and ( C )  is 
at  6 = ~ ,  and the unbinding of three strings, for which 
0 < 6 < 7r/2 is predicted to proceed always via a strongly 
discontinuous transition. This does not agree with the 
exact solution for 6 = ~ / 2 ,  which gives a continuous tran- 
sition with ifr=l. The broken line in Fig. 4 gives the re- 
sults of an improved necklace model, where we adjusted 
the boundary conditions for the Schrodinger equation in 
such a way that the exact result for 6=v/2  is recovered 
[9]. This curve agrees well with our numerical data in 
the vicinity of 0 = ~ / 2 .  

The critical temperature decreases as an inverse square 
root with the tension ratio q for fixed K t  and K3. By 
linear interpolation, we estimate Tc(q =O)/Tc(q = 1 ) 
: 1.5. 

In Fig. 1, the point denoted by a filled circle corre- 
sponds to the critical symmetric case, with 6 = ~ / 2  and 
$= 1. As one softens the inner string (and the angle 0 de- 
creases), one moves back into the diagram. The vertical 
axis measures temperature (or inverse potential strength) 
in reduced units of t =[T/~*(K, +K3)11"lÂ¥ note that a 
factor of 1 /T  has been adsorbed in the definition of U. 

Now consider the asymmetric case with Kt#K3. For 
K2= ixi, one has 6 = ~ / 2  and the corresponding 
Schrodinger equation can again be solved exactly: In this 
case, the two outer strings unbind from the wall at two 
different temperatures, the ratio of which is given by 
~ : 1 2 ) / ~ ( 2 3 ) = v ~  c 1/K3. In order to check the corre- 

sponding behavior for finite K2, we performed three TM 

calculations for q3= oo and q i =  1, 4, and 9, respectively. 
This corresponds to a stack of two strings on top of a rig- 
id wall. Here we find two distinct unbinding transitions. 
We conclude that the unbinding proceeds via two 
separate transitions for all values of 6 as soon as 
K t  /K3#1. The transitions are then characterized by the 
universal exponent $= 1. In Fig. 1, the four wings of 
these universal transitions come together at the locus 
denoted by the bold line, which is a line of tetracritical 
points. Apart from the decoupled case with q=0,  this 
line should lead to a nontrivial crossover from universal 
to nonuniversal critical behavior. 

Finally, the effective Hamiltonian as given by (3) can 
also be studied by functional renormalization-group 
methods [lo]. For infinitesimal rescaling factor 
b 3 1 +At, one obtains [9] 

where the two-dimensional potential U(y)  is a rescaled 
superposition of the mutual interactions in (3). For 
strings in two dimensions, one has C=+ and r=2. The 
flow equation (7) also applies to fluid membranes in three 
dimensions with t = 1  and r=2. Since r = 2  in both cases, 
the fixed points, defined by aU/at =0, are identical, and 
the critical exponents are related in a trivial way. Thus 
our results obtained for three strings should also be appli- 
cable to three interacting membranes, as confirmed by re- 
cent MC simulations of three fluid membranes [8,9]. 

Very recently, two mean-field-type calculations for the 
simultaneous unbinding of a stack of membranes have 
been described [I 1,121, which predict universal critical 
behavior, in contrast to the results presented here. 

Note added: The problem of n identical strings ( n  > 2 
has also been studied via an approximate mapping onto a 
quantum spin chain [13], which also leads to n- 
independent critical behavior. 
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