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Phase separation within the fluid membrane of a vesicle can lead to domain-induced budding. 
This shape transformation should occur both for the spinodal decomposition and for the nucleation 
regime and should be observable in quench experiments on phospholipid-cholesterol vesicles. The 
budding process leads to limit shapes for which the bud is connected by an infinitesimal neck to the 
original vesicle. This neck can be characterized by a general relation for the principal curvatures 
of the adjacent membrane segments. The effect of the 'Gaussian curvature on the shape is also 
discussed. 

PACS numbers: 82.70.-y, 64.60.-i 

Vesicles of lipid bilayers exhibit an enormous variety 
of different shapes and shape transformations [I-71. For 
example, they can exhibit the biconcave shapes of red 
blood cells (so-called discocytes) , they can develop small 
satellites or buds, and they can form dumbbells, pears, 
or even tori [2,4,7]. More exotic shape transformations 
have also been observed in which a long necklace of small 
vesicles is formed 131. 

Several attempts have been made to understand the 
physics behind these transformations. The main problem 
is to find appropriate control parameters which make it 
possible to  compare the experimental observations with 
the results of theoretical models. Recently, it has been 
shown that temperature represents such a control param- 
eter which can be used to change the vesicle shape. Since 
the thermal expansivity of the bilayer is large compared 
to that of water, the vesicle area changes more rapidly 
with temperature than the vesicle volume. This change 
in the area to volume ratio then leads to various shape 
transformations [2,5]. 

In this paper, we study the shape transformations of 
vesicles which are induced by another control parame- 
ter, namely, the composition of the lipid bilayer. More 
precisely, we consider vesicles which undergo phase sep- 
aration into two types of domains which are both fluid. 
One important example are vesicles composed of mix- 
tures of phospholipids and cholesterol [8] for which the 
coexistence of two fluid phases has been established very 
recently [9]. 

In general, a membrane domain embedded within the 
membrane matrix is bounded by a domain wall or edge 
with a finite line tension u. Therefore, the edge energy 
of the domain grows linearly with the length of this edge. 
For a flat domain, this length is proportional to the linear 
size of the domain. The bending energy of the domain, on 
the other hand, is independent of the domain size. Fur- 
thermore, the bending of the domain reduces the length 
of its edge and thus lowers its edge energy. Indeed, if 
the domain forms a complete sphere, its edge energy is 
essentially zero. Therefore, the domain can lower its en- 
ergy by forming a bud as soon as it has attained a certain 
size [lo]. This critical size is reached when the bending 

energy of the bud, which is determined by the bending 
rigidity K ,  is balanced by the line energy. The length 
scale where both energies are of the same order is set by 
the invagination length $ = K/cT. 

This domain-induced budding process has to be distin- 
guished from two other effects which have been recently 
proposed: (i) The phase separation within the membrane 
could lead to a striped phase and thus to a striped mod- 
ulation of the membrane shape [l l] ;  and (ii) the shape 
transformation of a homogeneous membrane could itself 
initiate phase segregation [12]. 

So far, domain-induced budding has only been studied 
for a simplified model in which the membrane domain 
was taken to form a spherical cap embedded in a flat 
membrane matrix [lo]. In the present paper, we will de- 
termine the shape both of the domain and of the matrix 
by a systematic minimization procedure. In this way, we 
can incorporate the various constraints which arise for 
the closed membrane of real vesicles for which the sur- 
face area A = 47r.g is essentially constant (at constant 
temperature). 

In general, a multicomponent membrane will exhibit 
a two-phase coexistence region as a function of tempera- 
ture and composition. The two coexisting phases will be 
denoted by a and Q. This (a/?) two-phase region exhibits , 

(i) a nucleation regime, in which one has to overcome an 
energy barrier in order to form a "criticaln domain, and 
(ii) a regime of spinodal decomposition in which such a 
barrier is absent. 

Now, consider a membrane which is initially prepared 
in a homogeneous state within the one-phase region and 
is then quenched into the (@) two-phase region. In this 
Letter we will address two different cases: (i) The mem- 
brane is quenched deep into the spinodal decomposition 
regime. If the phase separation process is sufficiently 
fast, it will create vesicles consisting of an a and a Q 
domain. As shown below, the equilibrium shape of such 
a vesicle is not spherical but exhibits a bud over a large 
range of the parameter values even if the difference P be- 
tween the inside and the outside pressure vanishes. (ii) 
The membrane is quenched into the nucleation regime. 
If the activation energy for the "critical" domain is suffi- 
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ciently large, only one domain will be nucleated initially 
and one may study the growth of such a domain. During 
the latter process, the enclosed volume V of the vesicle 
is essentially constant. 

Theoretical predictions for the behavior of two- 
component vesicles can be obtained from the minimiza- 
tion of the total energy of the vesicle. This energy con- 
sists (i) of the bending energies * and E? of the 
a and the (3 domain, respectively, and (ii) of the edge 
energy E ! )  of the (a@) domain boundary: 

The bending energies of the a and the Q domains are 
taken to be [13] 

with i = a@, bending rigidity K^ and spontaneous cur- 
vature c:?. The variables C1 and Ci denote the principal 
curvatures of the membrane surface. The edge energy is 
given by the line integral 

along t.he domain boundary. 
The total energy E is minimized for given values of the 

domain areas Am and A@, of the pressure difference P or 
of the enclosed volume V, and of the line tension cr. The 
area ratio x == A@/(Aa + A^) with 0 <. x 5 1 plays the 
role of a control parameter for budding. 

Shapes of minimal energy have been determined 
with the restriction to axisymmetry. Axisymmetric 
shapes are described by their contour line which can be 
parametrized by the arclength S in the interval So = 0 < 
S < S2, <S2 being the total length of the contour. The 
domain boundary is then located at a point Si on the 
contour. 

The variation of the energy (1) leads to shape equa- 
tions for the contour in the intervals S o  < S < Si and 
Si < S < S2 [14]. The minimization of the energy func- 
tional does not determine the boundary conditions of the 
shape equations at Si completely. This freedom corre- 
sponds to different ways to model the domain boundary. 
Two extreme cases are (i) that the domains a and (3 can 
meet in S1 at  any angle with no difference in energy, 
and (ii) that the surface has to be smooth at the domain 
boundary. The most physical assumption seems to be 
(ii), where both domains meet with the same angle. This 
boundary condition is used in the following. 

First, consider a quench experiment into the spinodal 
decomposition regime of the multicomponent membrane. 
On long time scales, water can permeate the membrane 
which leads to zero pressure difference, P = 0. Let us 
first consider the simplest case for which the a and the 
(3 domain have identical bending rigidities, K," = K@, and 

FIG. 1. Phase diagram for domain-induced budding of a 
vesicle for pressure P = 0 across the membrane as a function 
of the reduced line tension A and the relative domain area 
a;. The vesicle undergoes a discontinuous budding transition 
along the line Dbud, and attains a limit shape at Lch with 
an infinitesimal neck connecting the bud to the vesicle. The 
dashed trajectory corresponds to Fig. 2. 

no spontaneous curvature, C& = C? = 0. 
As shown in Fig. 1, the corresponding phase diagram 

exhibits a line hd of discontinuous budding transi- 
tions and a line & of limit shapes with an infinitesi- 
mal neck. Since the domains a and Q have the same 
elastic properties in this case, the energy E is invari- 
ant under the transformation x 4 -x + 1 which cor- 
responds to the exchange of the domains. The dashed 
line in Fig. 1 corresponds to a vesicle with reduced line 
tension A = u & / ~ f t  = &/f  = 7. The corresponding 
energy and equilibrium shapes are shown in Fig. 2 as a 
function of x and A. In practice, the infinitesimal neck 
should have a diameter which is of the order of the mem- 
brane thickness, a =  ̂5 nm. The energy required to  break 
such a neck is 2rau and the time for thermally activated 
fission is - exp(2'~racr/T). 

If the vesicle membrane is composed of a phospholipid- 
cholesterol mixture, the bending rigidity K, a 4 x J 
as measured by optical microscopy [15] and the line ten- 
sion u ̂ . 1 0 1 2  J/m as measured by relaxation experi- 
ments in monolayers [16]. Thus, for these mixtures, the 
invagination length f r^ 400 nm, and the sequence of 
shape transformations shown in Fig. 2 corresponds to 
the vesicle size RQ = 7< ce 2.8 pm which is directly ac- 
cessible to  optical microscopy. 

If the bending rigidity K? of the growing domain is 
smaller than K", the budding transition will occur for 
smaller buds. On the other hand, larger buds can be 
obtained if the growing domain is more rigid. Likewise, 
if C f  > CFp, budding happens for smaller values of x 
and thus leads to smaller buds. For large Cf  , one can 
enter a regime where the spontaneous curvature of the 
growing domain alone causes budding even if the line 
tension o- = 0 [14]. 
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FIG. 2. (a) Energy E of the vesicle as a function of the 
relative domain area x for reduced line tension A = 7, and (b) 
some of the corresponding vesicle shapes. The incomplete bud 
is stable up to Dbud with x = 0.10, metastable beyond Dbud, 
and becomes unstable at  &lib. The complete bud coexists 
with the incomplete one a t  Dbud and attains a limit shape at 
Let. The shapes are axisyrnmetric; the a and the 0 domain 
correspond to the broken and the full contour, respectively. 

As an example for the second type of experiment, 
consider a prolate vesicle with reduced volume v = 
3V747rg = 0.8 which has been prepared by a quench 
from the one-phase region of the bilayer into the nucle- 
ation regime of its two-phase coexistence region. After 
such a quench, the bilayer remains in its homogeneous 
phase, say a, until a domain of the minority phase, say 
(3, has been nucleated. The (3 domain will then grow by 
diffusion-limited aggregation within the a matrix and the 
relative surface area x =^A^/A will increase in time. 

For each value of x and of the elastic parameters of 
the membrane, one may determine the shape of lowest 
energy. In Fig. 3, the phase diagram, for these shapes is 
shown as a function of x and of the reduced line tension 
Afor ice=& and ĉ , =(7f  =0.  

As x is increased, the prolate vesicle undergoes a dis- 
continuous budding transition denoted by Dbud provided 
A > Ac 2i 9.7. As x is further increased, the bud closes its 
neck and forms a limit shape at  Lcb. Comparison of Fig. 
3 and Fig. 1 shows that the volume constraint truncates 
the line of discontinuous budding transitions at a critical 
point (x, A) = (xc, Ac) =  ̂ (0.5,9.7) at which the budding 
transition-is continuous. For A < Ac, there is no sharp 
budding transition. For A < Asp = 7.4, no limit shape 
with infinitesimal neck can be attained and no budding 
occurs. The shape transformation of the prolate vesicle 
with A = RO/Â = 12 is shown in Fig. 4. The qualitative 
features of the phase diagram in Fig. 3 apply for all val- 
ues of v with 1/& < v < 1. Close to v = 1, budding 
occurs only for large A with A l/^/vÃ‘ 

The complete bud can have a neck with a finite di- 

FIG. 3. Phase diagram of domain-induced budding of 
a prolate vesicle with constant enclosed volume v = 3V/ 
(47rG) = 0.8 as a function of the reduced line tension A and 
the relative domain area x. The line aud of discontinuous 
budding transitions ends in the critical point C. 

ameter. This neck diameter decreases further with the 
growth of the domain until the neck closes completely 
as the limit shape Lcb has been attained. In the ab- 
sence of the volume constraint, this limit shape consists 
of two spheres, one a and one 0 sphere, separated by 
an infinitesimal neck which contains the domain bound- 
ary. These limit shapes can be characterized by a simple 
relation. Such a neck relation was first proposed for ho- 
mogeneous vesicles [5,6], where an infinitesimal neck can 
only exist for Cgp # 0. For limit shapes of inhomogeneous 
vesicles considered here, the neck condition has to be gen- 
eralized. Without any constraint on V, we find that all 
numerically determined limit shapes are consistent with 
the generalized neck condition 

FIG. 4. (a) Energy E as a function of the relative domain 
area x for reduced line tension A = 12. The symbols are the 
same as in Fig. 3. (b) Examples of shapes which correspond 
to points on the energy diagram (a) with different values of 
X. 
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Here, CO' and C@ are the curvatures of the two domains 
a t  the point where they meet to form the ideal neck. If 
Cg = Cfp, = d and o- = 0, one recovers the relation 
CO' + C@ = 2Csp for the homogeneous case. For identi- 
cal domains with zero spontaneous curvature, the neck 
condition C" + C^ = cr/2~ shows that the spontaneous 
curvature plays a role very similar to  the line tension cr. 
The neck condition (4) completely determines the lines 
Lrh of limit shapes in the phase diagram. For the case 
shown in Fig. 1, the neck condition (4) leads to  the line 
Lcb given by A = Az,(x) = 2/++ 2,'v'l-x in the (a:, A) 
plane. 

In general, the bending energy for vesicle membranes 
also includes the Gaussian curvature term 

with Gaussian bending rigidity KG 1131. The Gauss- 
Bonnet theorem states that this integral over a closed 
surface is a topological invariant. It therefore has no ef- 
fect on the shape of a homogeneous vesicle. 

However, if the membrane is inhomogeneous, this is 
no longer true. In the case of a vesicle with two domains 
with K^J # 4, the Gaussian bending energy depends in 
fact on the vesicle shape and the budding transition is 
influenced by the Gaussian bending rigidities. While ex- 
periments with homogeneous membranes do not give any 
information about KG (assuming that the topology of the 
vesicle does not change), the Gaussian curvature energy 
has observable effects for domain-induced budding. 

away from the neck [14]. 
In summary, we have shown that vesicles composed of 

two fluid domains undergo domain-induced budding. For 
phospholipid-cholesterol mixtures, these budded states 
should be observable by optical microscopy (i) as equi- 
librium states for vesicles which have been quenched into 
the spinodal decomposition regime (see Figs. 1 and 2) 
and (ii) if a vesicle is quenched into the nucleation regime 
and one follows the growth of the largest domain (see 
Figs. 3 and 4). 

We thank David Andelman, Willi Fenzl, Toshihiro 
Kawakatsu, Kyozi Kawasaki, and Udo Seifert for stim- 
ulating interactions. 

Thus, let us add two Gaussian curvature terms Ez t 
J S ~  to the energy E in (1). The additional contribution 
can be simplified according to  [17] 

The first term is a contribution from the domain bound- 
ary which depends on the geodesic curvature Cg of this 
line. The second term gives a constant contribution and 
can be omitted. 

For axisymmetric shapes, the geodesic curvature Cg = 
- cos ip(S)/R(S) where $(S) and R(S) are the tilt angle 
of the contour and the distance of the contour from the 
symmetry axis, respectively. For the domain boundary 
with S = Si, the integral in (6) thus leads to  EY + 
EP = 27r(itg - K$) cos $(Si) ($ = 7r/2 corresponds to 
a direction parallel to  the axis of rotational symmetry). 
This additional term acts to shift the domain boundary 
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