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1 Interfaces, strings and membranes

The critical behavior of interfaces is related to their reduced dimensional-
ity. [1] In some cases, the interface can simply be viewed as a planar 2-
dimensional system. However, it can also ‘escape’ into the third dimension
and then attain nonplanar morphologies. This roughening of the interface
can be thermally excited or induced by frozen randomness. In addition, the
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170 i M. Lissig and R. Lipowsky

interface has a certain depth profile and thus has itself a third dimension.
This intrinsic thickness of the interface can become mesoscopic as in wet-
ting phenomena [1, 2]: one then has a thin layer which is bounded by two
interfaces. The thickening of this layer leads to the unbinding of these two
interfaces, see fig. 1.

These critical effects are not restricted to three dimensions. Indeed,
roughening, wetting and general unbinding phenomena also occur in 2-
dimensional systems where they are governed by the behavior of 1-dimensional
domain boundaries. [3] Since these domain boundaries are governed by a fi-
nite line tension, their statistical mechanics is intimately related to other
1-dimensional lines or strings such as (i) steps or ledges on crystal surfaces,
(ii) stretched (or directed) polymers, and (iii) vortex lines in superconductors.

It turns out that these 1-dimensional strings have scaling properties which
are very similar to those of 2-dimensional membranes, i.e., thin sheets of
molecules. [4] The most prominent examples of such membranes are bilay-
ers of amphiphilic molecules which represent model systems for the rather
complex membranes of biological systems. [4, 5] These membranes are also
roughened by thermally—excited shape fluctuations. In addition, the adhe-
sion and unbinding of membranes can be understood in close analogy to
interfacial wetting, see fig. 1. Adsorption—desorption transitions of polymers
[6] are a related unbinding phenomenon.

The unbinding of strings and surfaces is often driven by their shape fluc-
tuations which renormalize their direct interaction arising from intermolec-
ular forces. For thermally—excited fluctuations, this renormalization acts to
increase the repulsive part of the interaction. At low temperatures, these
fluctuations are weak and the renormalized interaction closely resembles the
direct interaction. However, as the temperature T is increased, the renor-
malization becomes more and more effective up to a characteristic unbinding
temperature, T = T, at which the manifolds undergo an transition from a
bound to an unbound state.

The critical behavior at these unbinding transitions involves several di-
verging length scales such as the mean separation or the roughness of these
manifolds . In addition, other quantities such as the probability for local
contacts are also singular at these transitions. This quantity represents a
convenient starting point for a systematic field-theoretic treatment of these
transitions [7].

This article reviews recent theoretical work on these critical phenomena
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Fig. 1. (a) Wetting layer of phase 3 between two bulk phases o and . The thickening of
this layer corresponds to the unbinding of the two interfaces bounding the layer; and (b)
Adhesion of a flexible membrane consisting of a thin layer of molecules towards another
interface. The shape fluctuations of the membrane act to unbind the two surfaces.

[7-14]. Tt is organized as follows. The scaling behavior of interacting mani-
folds and theoretical models for these systems are briefly reviewed in Sect. 2
and Sect. 3, respectively. Then, in Sect. 4, a new scaling picture is described
[12] in which the probability of local contacts between the interacting mani-
folds plays a prominent role. This scaling picture is developed in some detail
for the case of strings interacting via short-ranged or long-ranged potentials.
In this context, we discuss in Sect. 4.7 the unbinding transition of bundles
of nonintersecting strings in the transfer matrix approach [8, 9, 10, 13]. Sect.
4.8 contains extensions of the scaling picture to other systems.

The scaling picture can be justified in a systematic way by applying con-
tinuum field theory to these systems [7]. The central idea is to treat all
interactions as local operators which form an operator algebra characterizing
their universal short-distance properties. In this article, we do not assume
any knowledge of field-theoretic renormalization; Sect. 5 can also be read as
a self-contained introduction to some ideas in this subject. In Sect. 6 we
apply these methods to a number of more difficult problems in the context of
interfaces {7, 11, 14]: strings with long-ranged interactions, systems of many
strings (which may be “bosonic” or “fermionic”), and interfaces of general di-
mensionality. In all cases, we find a number of nontrivial universality classes.
We conclude this section with a brief outlook.
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2  Scaling behavior of interacting manifolds

In this section, we will introduce the various quantities which are singular at
roughening, wetting and unbinding transitions and define the corresponding
critical exponents.

2.1 Roughness exponent (

As mentioned, low-dimensional manifolds are often rough, i.e., they make
large transverse excursions from their mean or average pos1t10n More pre-
cisely, such a manifold is rough if the typical size, £, of its transverse excur-
sions grows with its lateral size, §. This behavior can usually be described
by the scaling law

&L~ gt (2.1)

which defines the roughness exponent ¢. For interfaces and domain bound-
aries, the universality classes for this exponent are primarily determlned by
the symmetry of the two bulk phases adjacent to the interface.

2.2 Roughening exponent v

The roughness of the manifold can change as a function of temperature or
some other control parameter. For example, the 2-dimensional interface
between a periodic crystal and its vapor is smooth at low temperatures 7" with
£. confined by the lattice potential. As the temperature is increased, this
confining potential becomes less and less effective and the interface becomes
delocalized up to a critical temperature T, at which it undergoes a roughening
or delocalization transition. For T > T,, the interface is rough at all scales.
Likewise, a domain boundary may be localized at low temperature by a defect
line (in D = 2) or by a defect plane (in D = 3) but may become delocalized
at sufficiently high temperatures.
As the critical temperature, T, is approached from below, the roughness
€1 typically grows as
€L~ 1/(T, = T)*™ (2.2)

which defines the roughening exponent v, . In general, this exponent depends
on the nature of the effective potential confining the interface and one must
distinguish several universality classes or scaling regimes of these potentials.
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2.3 Unbinding exponent 7

Now consider two interacting manifolds with local separation [. If these
manifolds undergo an unbinding transition, their mean separation () diverges

and grows as
(=) ~1/(T,~T) (2.3)

which defines the unbinding exponent ¢. This exponent in general also de-
pends on the nature of the interaction potential experienced by the two
manifolds.

In most cases of interest, the manifolds become rough or delocalized as
they unbind. In fact, we will be primarily interested in situations in which
the unbinding is driven by the roughening of the manifolds. One may then
consider the roughness of the local separation field ! which is defined by
& = ([l — (1)]?)V/2. If the unbinding is driven by the shape fluctuations,
one has £, ~ £, and the unbinding exponent 7 is equal to the roughening
exponent v, (there is one exceptional case where short-ranged attractive
potentials compete with repulsive potentials of ‘intermediate range’, see Sect.
4.6).

2.4 Contact exponent (j

Another quantity which exhibits singular behavior at roughening and un-
binding transitions is the probability P of locally bound segments, i.e., of
local contacts between the interacting manifolds. As discussed in some detail
in the following sections, this quantity is quite generally given in terms of
the one-point function of a local operator ® and vanishes as

Po~ (B) ~ 0~ g 70 (2.4)

close to criticality [7] * This defines the contact exponent (.

The simplest situation is exemplified by an interface characterized by a
Gaussian probability distribution exp(—1?/2£2)/&, for the fluctuating field
I. In this case, we have P, ~ 1/£,, and hence the contact exponent (y equals

¢.

* A precise definition of “locally bound segments” must distinguish between “bosonic”
and “fermionic” systems, see eqns. (5.4) and (6.26) below. The exponent (o will be called
x in Sect. 5.
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In general, two cases must be distinguished. If the attractive part of
the potential is sufficiently short-ranged, the exponent ¢, is related to the
roughening exponent v, via a scaling relation, see the relations (4.19) and
(4.27) below. On the other hand, if the bound state of the manifold is
controlled by an attractive potential which is sufficiently long-ranged, the
exponent v, is determined by this long-ranged potential. The the exponent
Co may still governed by a repulsive short-ranged potential, in which case
the two exponents are independent.

3 Effective models for interacting manifolds

In the continuum limit, the position of each fluctuating manifold can be de-
scribed by a displacement field I = I(s) where s is a dy—dimensional coordinate
parallel to a reference plane. For roughening or delocalization phenomena,
the field [ gives the distance of the manifold from this reference plane; for the
unbinding of two interacting manifolds, this field measures the separation of
these two manifolds.
The effective Hamiltonian for the displacement field [ has the generic form
[1]
H{l} = Ho{l} + / V]i(s)]d% s (3.1)

where Ho{l} represents the elastic energy of the shape fluctuations in the
completely unbound state and V(I) is an effective potential which acts to
localize these shape fluctuations. H will also be called the action for the field
! in order to avoid confusion with the corresponding Hamilton operator H ,
the infinitesimal generator of the transfer matrix.

For roughening and delocalization phenomena, the potential V(I) can
describe the effect of an underlying lattice which may be periodic [15] or
quasi-periodic [16] Below, we will discuss the influence of a defect line (or
defect plane) which acts to localize the interface. In this latter case, the
potential V(I) is taken to be symmetric and to have local minima at the
position of the defect and for | = +o0. [7]

For wetting and adhesion phenomena, the potential V(1) describes the
interaction energy of the two manifolds at separation /. Usually, the two
manifolds cannot intersect one another, and this interaction potential con-
tains a hard wall at [ = 0 which ensures that the displacement field satisfies
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[ >0.
In Sections 4.7 and 6.2, we will also study the case of many interacting
lines and thus of a large number of displacement fields.

4 A refined scaling picture for unbinding
phenomena

A localized manifold can be regarded as an ensemble of essentially uncorre-
lated humps, see fig. 2 below. This view leads to the concept of a fluctuation—
induced interaction Vy between the manifolds. In the case of thermally—
excited fluctuations, Vy represents the loss of entropy arising from the con-
finement. This fluctuation—induced interaction can be used in a heuristic
way in order to understand the critical behavior at unbinding transitions.

It has been previously emphasized that a simple superposition of Vg
and the direct interaction V(I) does not predict the correct critical behavior
unless the interaction V(I) is sufficiently long-ranged. [17] Here, a refined
scaling picture [12] based on a two-state model for the interacting segments
of the manifolds is described which is appropriate for any type of interaction
potential. This scaling picture can be justified in a systematic way in the
field-theoretic framework [7] described in Sections 5 and 6 below. A cru-
cial role is played by the probability that two segments of the interacting
manifolds form locally bound pairs.

In the following section, the refined scaling picture will be first described
for 1-dimensional strings governed by a finite line tension. The case of wetting
in two dimensions, i.e., of two strings in D = 1 4+ 1 dimensions interacting
via general pair potentials is discussed in some detail. For the special case of
attractive square—well potentials, similar scaling ideas have been previously
formulated for the so—called reflection model in Ref. [18]. The extension of
the refined scaling picture to other types of manifolds is briefly described
in Sect.4.7 and 4.8. The same picture can be formulated for bundles and
bunches of N manifolds where it leads to a N—state model. [12]

Now consider two interacting strings in 141 dimensions with line tensions
o1 and o9, respectively. The action (or effective Hamiltonian) for their local
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separation (or relative displacement field) ! is given by

ity = [ {-;—a(dl/ds)z + V()] }ds (4.1)

with the reduced line tension o = 0,09/(01+02). If one string has an infinite
stiffness, say o, = oo, corresponding to a straight rigid boundary, one has
o=01/2.

This model can be analysed in much detail by transfer matrix methods,
and one can obtain the exact critical behavior for many potentials V(I). From
these latter results, one knows that there are several universality classes
for the unbinding transition which depend on the long-ranged part of the
interaction potentials. As shown below, the refined scaling picture is valid
for all of these universality classes.

4.1 Two—state model for interacting strings

In general, the direct interaction potential V(l) will contain a short-ranged
part and a longer-ranged part, which will be denoted by V4(l) and Viu(l),
respectively (the indices b und ub will become clear in a moment). It will be
convenient to introduce a microscopic length scale l, and to define these two
parts of the potential via

Vb(l) = V(l) for 1<l (42)

and
V() = V(1) for 1>1, , (4.3)

respectively.

If the interaction potential contains an attractive short-ranged part, the
scale lp is given by the potential range of this attractive part. If the short—
ranged potential is purely repulsive, the choice of I, is somewhat arbitrary
but it should be small compared to the length scales which enter the long—
ranged part. In any case, the short-ranged part will contain the hard wall
interaction which ensures that the two manifolds cannot intersect.

Two string segments which interact via such a potential can attain two
different local states, see fig. 2: (i) They are locally unbound if their sepa-
ration exceeds the length scale l,; and (ii) They form a locally bound pair if
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Fig. 2. The bound state of two strings consists of humps which have lateral and transverse
extension £ and £, respectively. The microscopic scale l, represents the range of the
short-ranged part of the interaction potential. Two adjacent segments of the two strings
are locally bound and unbound with probability P, and P,s, respectively.

their separation is smaller than [,. The probabilities for these two different
local configurations will be denoted by Py, and Ps, respectively.

Note that even if the string segments are locally unbound, they still have
a finite separation. Therefore, compared to the situation in which the strings
are completely separated, locally unbound segments have an excess free en-
ergy AF,, per unit length. Likewise, the excess free energy per unit area of
a locally bound pair will be denoted by AF,. Thus, the excess free energy
per unit length of the two strings can be estimated as

AF = AF, Py + AF, Py . (44)

If the unbinding transition is continuous, both the excess free energy AF,;
of the locally unbound segments and the probability P, for locally bound
pairs must vanish in a continuous way whereas Py = 1 — P ~ 1 as the
transition is approached. In addition, all critical quantities should scale with
a single length scale which is here taken to be the roughness &, of the string
separation. Since £, diverges at the transition, one anticipates that both
AF,, and P, scale as inverse powers of £ .

The excess free energy AF;, for bound segments, on the other hand, arises
from configurations which have a separation of the order of the microscopic
length scale I, and, thus, will not depend on the diverging scale ;.
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4.2 Excess free energy of locally unbound segments

As indicated in fig. 2, the fluctuations in the string separation ! can be
regarded as an ensemble of humps which have the typical height £, and the
longitudinal extension §. Since the string separation is governed by a line
tension, it diffuses like a (directed) random walk. Therefore, the two length
scales £, and & satisfy the scaling relation

€L~ (T)a) 2 g *, (4.5)

i.e., the roughness exponent has the value { = 1/2.

Each hump of longitudinal and perpendicular extension £y and £, has the
volume V =~ €, . Assuming that these humps are essentially uncorrelated
and using the ideal gas law PV =T for a single degree of freedom together
with the relation (4.5), one arrives at the pressure P ~ T?/0¢,°%. Alterna-
tively, one may allude to the equipartition theorem and postulate that each
such hump has a free energy ~ T'. This implies that the hump free energy
per unit (projected) area behaves as

Va(r) ~ T/ ~ T? /o2 for large &, . (4.6)

The disjoining pressure is now obtained from P = §V;;/0€, . This estimate of
the excess free energy of interacting strings is implicit in the work of Gruber
and Mullins on steps or ledges on crystal surfaces [19] and has been explic-
itly derived by Prokovsky and Talapov for commensurate-incommensurate
transitions in two dimensions [20].

Thus, the locally unbound segments suffer a loss of entropy per unit length
which is given by V5 (€1) and which represents one contribution to the excess
free energy AFyp. In addition, these segments also have an interaction energy
Vu(1). 1t is plausible to assume and it can be checked a posteriori that the
mean separation £ = () is proportional to £, close to the transition. In such
a situation, the excess free energy of the locally unbound segments can be
estimated as

AFy = aT?/ot3 + V(c€l) . (4.7)

Thus, for all long-ranged interactions which decay faster than ~ 1/12 for
large 1, one has AFy,, ~ 1/£2.
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4.3 Scaling form for the probability distribution

Next, let us address the dependence of the probability P, for locally bound
segments on the roughness scale ;. In general, the probability distribution
P(l) for the string separation ! should have the scaling form

Py~ /))& for 1>y (4.8)

where the explicit factor 1/£, arises from normalization. The probability P,
can then be estimated as

Py = P (L) = (Ib/E0)U/EL) - (4.9)

Therefore, the probability P, is determined by the behavior of (s) for small
s.

For strings in two dimensions, the probability distribution P(l) is given
in terms of the ground state wavefunction of the transfer matrix operator
which can be explicitly calculated for many potentials. The results of these
calculations will be described in the following subsections 4.5 and 4.6. In all
cases, one finds the scaling behavior

Q(s) ~ st forsmalls  with{y >0 (4.10)

provided (i) the transition.is continuous and (ii) the mean separation £ ~ &,
as assumed here (exceptions occur for interaction potentials with a long-
ranged repulsive part which decays to zero not faster than ~ 1/¢3). The
relation (4.10) implies that the probability for locally bound segments be-
haves as

Py~ 150~ 1% (4.10)

4.4 Competition between locally bound and unbound
segments

Now, we can insert the two relations (4.11) and (4.7) into the expression (4.4)
for the excess free energy in order to arrive at the estimate

AF =~ cT?[0€2 + Vip(cob)) + csAF, /€% (4.12)

in the limit of large £, where c;, ¢o and c; are dimensionless and positive
coefficients.
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The continuous unbinding of the two strings now correponds to a min-
imum of AF with respect to £, which goes continuously to infinity as the
temperature or some interaction parameters are varied and the unbinding
transition is approached.

Since the first term in (4.12) is positive, either the second or the third
term must be negative in order to have a minimum of AF' at a finite value
of £1, i.e., in order to have a bound state of the two strings. The third term,
AF, Py, for locally bound segments, involves the exponent (o which has not
been specified so far. A balance of this term with the two other terms in
(4.12) shows that two cases must be distinguished: (i) For 0 < (o < 1, the
third term dominates provided the long—ranged part V,(l) does not decay
more slowly than ~ 1/12. The unbinding transition then occurs as AF} goes
to zero from below, and the critical behavior of £, is directly related to the
probability Ps; and (ii) For 1 < (o < oo, a bound state is only possible
for an attractive interaction Vy(l) < 0 which grows for large [ or decays
more slowly than ~ 1/12. In this case, unbinding occurs as this long-ranged
attractive part goes to zero, and the corresponding critical behavior of £, is
not affected by the probability P,.

4.5 Strong—fluctuation regime

The so—called strong—fluctuation regime consists of all interaction potentials
which decay faster to zero than ~ 1/I? for large I. First, consider the case
of an attractive square-well potential of depth |U| and range l,. In this case,
the longer-ranged part Vy, is identically zero. The excess free energy for
bound pairs can be estimated as AF, ~ —|U| 4 ¢T?/ol,* where the first and
the second term represent the interaction energy and the entropy loss within
the square well, respectively. In addition, transfer matrix calculations show
that the probability distribution P(l) exhibits the scaling form (4.8) with
(s) ~ e~*. Since Q(s) ~ const for small s, one has

Co=1/2 and Pp~ 1/ . (4.13)

If these expressions are inserted into the excess free energy AF, mini-
mization with respect to £, leads to
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which is indeed the correct critical behavior for the unbinding transition
within a square-well potential. [21, 22] |

The same critical behavior applies to all potentials within the strong—
fluctuation regime, i.e., to all potentials with a tail V(1) which decays faster
than ~ 1/1%. [23] This can be understood by inspection of the expression
(4.12) for the excess free energy: the tail V,;(c£)) is irrelevant compared to
the short-ranged part AFy Py ~ AF,/€.%° provided the exponent (o still
has the value (o = 1/2 . Thus, these interaction potentials are short-ranged
even though there tails decay as inverse powers.

On the other hand, if the short-ranged potential is repulsive, field-theoretic
renormalization group calculations [7, 11}, described in Sect.5 below, and ex-
act transfer matrix calculations [13] yield

=3/2 and Py~1/63 . (4.15)

Since this probability decays faster than the entropy loss ~ 1/£3 and since
AFy is always positive, the term AF, P, does not affect the minimum of AF
and thus does not affect the critical behavior of &, .

For example, one may confine the strings by a potential Vy(l) ~ [ or
~ {? and consider the limit in which the amplitude of such a potential goes
to zero. In fact, the same value {, = 3/2 applies to all attractive long—
ranged potentials which decay more slowly than ~ 1/[2. The marginal case
Vub ~ 1/1%, on the other hand, is more complex since it leads to a nonuniversal
value for (p as discussed in the next subsection.

4.6 Intermediate fluctuation regime
Now, consider interaction potentials which behave as

V(1) ~ Wi? for large I (4.16)

which defines the socalled intermediate fluctuation regime. [24] In this case,
the behavior of the probability distribution P(l) = Q(I/£1)/€L for small |
depends explicitly on the dimensionless parameter

w = 20W/T? (4.17)

where ¢ and T are the string tension and the temperature, as before.
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In fact, when considered as a function of w, the exponent (y has two
branches depending on the sign of the short-ranged part of the interaction
potential. For attractive short-ranged potentials, the probability distribution
can be calculated using the results of Ref. [24]. As a result, one finds the
singular behavior

Q(s) ~ s*°!  with (o=1-+w+1/4 (4.18)

for small s. If these values for {y are used in the expression for AF, mini-
mization of this excess free energy leads to

€_L ~ 1/|AFb|UJ‘ with vy = 1/(2 - QC()) (419)

which is again the correct critical behavior at the unbinding transitions. The
case of a short-ranged potential is recovered for w = 0 with {, = 1/2 and
v) = 1. Thus, the roughening exponent v, and the contact exponent (, are
not independent but satisfy a scaling relation in this case.

The critical behavior as given by (4.19) applies to —1/4 < w < 3/4.
For w < —1/4, the attractive potential V() ~ 1/I? is so strong, that
the two strings cannot unbind. For w > 3/4, on the other hand, one has a
relatively large potential barrier, and one then enters the so—called subregime
(C) in which the probability distribution P(l) has the scaling from P(l) =
(/€)1 Q(I/€y) with p = (/w+ 1/4 and Q(s) ~ s'~% for small 5. [25]
This implies that the probability distribution P(l) attains the limiting form
P(l) ~ 1*=** and P, = P(l;) =~ const at the unbinding transition.

The interactions within the intermediate fluctuation regime have also
been studied by functional renormalization. [26, 27, 28] As a result, one finds
a parabolic renormalization group flow with a whole line of fixed points. The
fixed point line has two branches corresponding (i) to critical wetting transi-
tions in the presence of attractive short-ranged potentials, and (ii) to com-
pletely wet states for repulsive short-ranged potentials. The latter branch
is governed by completely repulsive fixed points at which the short-ranged
potentials represent irrelevant perturbations. The corresponding scaling in-
dex depends on w. In two dimensions, one may set up an exact functional
renormalization group (RG) in which the transfer matrix is diagonalized in
an iterative manner. The scaling indices obtained from numerical iterations
of this RG transformation [27] imply the contact exponent

Go=1+yw+1/4 . (4.20)
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The case of short-ranged potentials is again recovered for w = 0 with {3 =
3/2. Thus, if the strings experience an effectively repulsive short-ranged
potential, the probability for local contacts is more and more suppressed
with increasing w or W.

It is interesting to note that the intermediate fluctuation regime charac-
terized by the contact exponents as given in (4.19) and (4.20) also applies to
several other string systems if one makes an appropriate identification of the
parameter w. First of all, the same critical behavior is found if the interac-
tion potential V(l) is symmetric and does not contain a hard wall. [29] Such
a potential would arise, e.g., for a domain boundary with stiffness ¢; which
interact with a plane of defects. In this case, w is still given by (4.17) with
o=o01/2.

Secondly, two strings in D = 1 + d; dimensions interacting with short—
ranged interaction potentials belong to this intermediate regime. In this
case, one has w = (d, — 3)(d, — 1)/4 [25] and thus

o(do) = 1£[dL - 2[/2 . (421)

Thus, there are two branches for the contact exponent with {, = d; /2 and
o = 2—d_ /2, respectively, which cross at d; = 2. The branch with {; = d, /2
represents effectively Gaussian fluctuations with P(l) ~ exp[—1?/2£, %] /€. %.

For 1 < d; < 2, the critical unbinding transition and the completely
unbound state are characterized by {, = d1/2 and by {, = 2 — d /2, re-
spectively. For dy > 2, the two branches have exchanged and the critical
unbinding transition now corresponds to (o = 2 — d, /2. The latter value is
valid up to d; = 4; for d; > 4, one has w > 3/4 and thus enters the so—called
subregime (C) as explained above.

Thirdly, the necklace models that we discuss in Sect. 4.7 can also be
mapped onto the intermediate fluctuation regime.

4.7 Necklace models and nonintersecting strings

Consider the necklace model for three strings with line tensions o1, o9 and o3
[30, 8]: the strings interact via a hard-wall pair potential, which ensures that
they cannot intersect, and via a short-ranged attractive 3-body force. Thus,
the two outer strings experience the 3-body force and an effective repulsion
arising from the confinement of the interior string. The entropy loss of the
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interior string behaves as ~ 1/l* which implies that the effective repulsion
between the two outer strings scales in the same way.

This necklace model is characterized by the parameter w = (7/6)? —
1/4 with tan(8) = 1/(02/01) + (02/03) + (022/0103) and 0 < 6 < 7/2. [8]
It then follows from (4.18) and (4.19) that (o(3) = 1 £ 7/6. The minus
sign corresponds to unbinding transitions in the presence of an effectively
attractive 3-body force. However, since the minus sign leads to (o < 0
corresponding to w > 3/4, these transitions belong to subregime (C) for
which ¢o = 0. On the other hand, if the short-ranged 3-body force between
the three strings is effectively repulsive, this system is characterized by the
contact exponent

GB) =1+n/0 . (4.22)

Thus, if one keeps the three strings together by an external pressure or by
some other long-ranged potential, the probability Pss that all 3 strings form
a local bound state behaves as Pg, ~ 1 /§||C°(3) As the line tension oy of
the interior string decreases, the angle 6 decreases and the contact exponent
(o increases. This is rather intuitive: as the interior string fluctuates more
strongly, local contacts between the two outer strings become less likely.

The necklace model for m identical strings as described in Refs. [31, 32]
also belongs to the intermediate fluctuation regime [33]. In this latter model,
the strings again experience hard wall potentials between nearest neighbors
and thus do not intersect whereas their attractive interaction is restricted
to a short-ranged m-body potential. In this case, the parameter w has the
value w = [(m? — 3)? — 1]/4 [33] and the two relations (4.18) and (4.19) for
Co lead to Co(m) = 1= |m? — 3|/2. For m = 2, one recovers the contact
exponents for two strings and w = 0: there are no interior strings in this case
and, therefore, there is no effective repulsion ~ 1/{2.

For m > 3, on the other hand, the branch of {o(m) = 1+ |m?—3|/2 with
the minus sign corresponds to critical transitions in the presence of attractive
m-body forces which again belong to subregime (C). Likewise, the branch
with the plus sign again correponds to effectively repulsive m-body forces
for which one has

Co(m) = (m* -1)/2 . (4.23)
Now, this exponent governs the probability Pps that all m identical strings

form a local bound state, i.e., Pmp ~ 1 /§||C°(m) where a finite value of §
is enforced by an external pressure or by another long-ranged potential.
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The values (4.23) for the contact exponents have previously been derived by
field-theoretic renormalization [11]; they are the scaling dimensions of the
m-string contact operators (6.26) at the free Fermi fixed point (see (6.25)
below). They govern the contact probabilities Py as long as all attractive
interactions are sufficiently weak

In systems of several nonintersecting strings, there may be two-body and
many-body interactions of either sign. Numerical transfer matrix results [§]
as well as Monte Carlo simulations of bundles of strings or membranes [10]
indicate in general a second order unbinding transition not in the universality
class of the necklace model with a transition temperature that is independent
of the number N of strings. This is understandable from the scaling picture
[12] since with attractive pair forces the unbinding should be governed by
Py, alone. However, the effective critical exponents were found to depend on
N over the numerically accessible range of scales |8, 10].

On the other hand, if only pair interactions are taken into account, the
transfer matrix can be mapped onto that of a spin 1/2 zzz quantum spin
chain; this model is soluble by a Bethe ansatz and yields the N-independent
“Gaussian” exponents v, = 1 and v, = 2 [9]. (Bethe ansatz methods may
be extended to treat the unbinding of a system of such strings from a wall
13].) |

The renormalization group discussed in Sect. 6.2 [11] reconciles these
two results: if the unbinding is driven by pair forces, it is in the Gaussian
universality class for an arbitrary number of strings, but the three-particle
interactions contribute large corrections to scaling that may account for the
N-dependence of the effective exponents. Moreover, there is a discrete se-
quence of new universality classes characterized by (o = 0.

4.8 Extension to interfaces and membranes

The scaling picture for interacting strings as described above can be easily
extended in the following way. First of all, the fluctuating humps of the
manifolds will in general be governed by £, ~ 5”C with ¢ # 1/2. Asin the case
of interacting strings, the roughness exponent ¢ determines the fluctuation—
induced interaction Vj between the manifolds which can represent a loss
of entropy or an increase in energy. The latter situation arises in systems
with quenched or frozen randomness for which the manifolds are subject to
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a random potential. For thermally—excited fluctuations, one has
Vﬂ ~ 1/65_ with 7= d||/< . (4.24)

The case of 1-dimensional strings corresponds to dy =1, { = 1/2 and 7 = 2.
For fluctuations induced by quenched or frozen randomness, one has [34]

Thus, the excess free energy of two interacting manifolds can now be
written in the form

AF n i AJET 4 Vap(cat L) + AF /€, (4.26)

Minimization of this expression with respect to £, now leads to £1 ~ 1/|AF|”
with the roughening exponent

vy =1/(r = G/O) - (4.27)

One nontrivial check of this prediction can be obtained for wetting in
9—dimensional random bond systems. In this case, one has two interacting
strings which feel a random potential with short-ranged correlations, and the
roughness exponent has the value { = 2/3 which implies the decay exponent
r = 1. For a square-well potential, transfer matrix calculations using the
replica trick lead to the scaling form P(I) ~ Q(l/€1)/€. for the probability
distribution P(l) with the singular behavior {(s) ~ 1 /s'/? for small s, see
[1], p.317. This implies {o/¢ = 1 —1/2 = 1/2. Thus, the excess free energy
becomes

[

AF ~ cAJE, + AF /€, (4.28)

Minimization of this expression with respect to £, leads to the critical be-
havior
E_L ~ 1/‘AFb‘yJ‘ with V) = 2 (429)

at the wetting transition. This agrees with the critical behavior as obtained
via transfer matrix methods. [35, 36

On the other hand, repulsive short-ranged potentials should also be char-
acterized, in general, by a nontrivial value for the contact exponent (o. The
expression (4.26) for the excess free energy implies that, in this latter case,
the exponent (o should satisfy the inequality (o/¢ > 7 which implies

Co>dyp and {o>2(1-) (4.30)

for thermally—excited fluctuations and for fluctuations excited by frozen ran-
domness, respectively.
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5 Field-theoretic renormalization I:
An introductory example

In this section, we discuss in detail an ensemble of interacting random walks.
This serves as an illustration of the field-theoretic methods' that are also im-
portant to the study of more general interfacial problems [7, 11]. Although
the example is elementary it contains many aspects of renormalization group
theory and can be read as a self-contained introduction to this subject. The
results of the renormalization group calculation will be checked by indepen-
dent means.

Random walks (or directed polymers) in D = 1 + d’ dimensions* are
described by a d’ -component position variable 1(s), see fig. 3. (Interfaces in
a two-dimensional system are the special case d’ = 1.) Since these lines do
not have overhangs, the free action for a single line is

=3 (42

We want to study the statistical effects of a short-ranged pair interaction
between two such lines,

) ds. (5.1)

H = Ho(ly) + Ho(ls) + § / 8(1x(s) — 1,(s))ds . (5.2)

The scaling dimension x4 of a variable A is defined by its transforma-
tion properties under scale transformations (i.e. substitutions s — s/b of
the length variable): A — Ab®4. The free action Hp contains two dimen-
sionful variables, the position field of dimension —1 and the surface tension
of dimension 1. The entire expression Hy is a pure number and hence of
dimension 0. It is convenient to redefine the field variable, z = (o/T)'/?1
such that the free action in the new variable

Ho(z) = / (dz(;)) ds (5.3)

tThe approach described here, which is based on the critical operator algebra, is familiar
in two-dimensional conformal field theory; see refs. [37, 38].

tFor notational simplicity, we call from now on d (before d;) the number of longitudinal
and d’' (before d, ) the number of transversal dimensions.
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Fig. 3. Two directed lines in D = 1+ d’ dimensions, described by d'-component canonical
position variables z; = (6/T)Y?]; (i = 1,2). The lines interact at their intersection points.

remains form invariant under scale transformations. This is called a fized
point. z has the canonical scaling dimension —1/2. The same substitution
in the interaction defines the new interaction field

®(s) = 6(z2(s) — 21(3)) (5.4)
of canonical dimension 7
- O 5.
=1 59
and the conjugate coupling constant g = (¢/T)~¢/2§ of dimension
2—-d
y:l——x:-——-2 . (5.6)

In the following assume that the transversal volume occupied by the two
strings (given by the range of the vectors z, and z,) is finite, for example that
each component of these vectors is compactified to a circle of circumference
L, = LY2. This infrared reqularization introduces a finite probability that
two free strings meet (and interact) at a given “time” s, namely

(®(s))o ~ L. (5.7)

The full two-point function of the fields ®(s;) and ®(s;) measures the prob-
ability of two interactions taking place at times s; and sy, i.e. the product
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of the probability for the first intersection (5.7) and their return probability
to each other. At large distances |s2 — s1|2 L, this product approaches its
asymptotic value (®(s;))2. The connected correlation function has the form

(D(51)®(s52))o = (@(51))o |52 — 51| 7" f(|s2 — &1l /L) (5-8)

where f(t) = 1 for t < 1 and f(t) is dominated by an exponential decay
exp(—t) for t21. The derivation of this simple consequence of (5.3) is left to
the reader. The relation

@(Sl)q)(32) = I52 - 81|"”¢'(51) +... (59)

for |s; — s1] <« L is valid even as an operator identity, i.e. when inserted
into an arbitrary correlation function (... ®(s;)®(sz) . ..)o- (The less singular
terms omitted on the r.h.s. contain gradient fields.) This is the simplest
example of an operator algebra describing universal short-distance properties
of the correlation functions. It is important to note that the operator algebra
is independent of the infrared regularization.

The scale L serves not only to regularize the correlation functions but
also as a macroscopic unit of length for the system. We use it to define the
dimensionless coupling constant

u=gL¥ (5.10)

and the dimensionless free energy of a system of transversal length L, = L'/2
and longitudinal length L; in the thermodynamic limit of L,:

L

F =~ lim L—/Dz exp(—H(z; L, L)) . (5.11)
= Ly

L is not an intrinsic scale of the system, but an external experimental vari-

able. The response of the coupling constant u to a change of L is called its beta

function:
Loru = B(u). From (5.10), we obtain

Bu) = yu. (5.12)

This flow equation is depicted in fig. 4 (a). It has two fized points (i.e.
values of u that remain invariant under a change in L): the free action fixed
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u=0

<@ | |

U=0 U

Fig. 4. Renormalization group flow. (a) In the unrenormalized coupling constant u, the
two fixed points are u = 0 and U = U*. (b) In the renormalized coupling U, the fixed
points are U =0 and U = U™,

point u = 0 and the fixed point u = co. With increasing parameter L, all
values of u flow from an unstable fixed point to a stable fixed point that hence
characterizes the behavior on large scales. For y < 0 (i.e. d > 2), the free
action is stable (the interaction g® is then called an irrelevant perturbation of
the free theory); for y > 0 (i.e. d’ < 2), it is unstable (the interaction is then
called a relevant perturbation), and the long-distance behavior is governed
by the fixed point u = oo. :

We want to calculate this long-distance behavior of the interacting theory
in terms of the correlation functions (5.7) and (5.8) of the free theory. We can
write the free energy (5.11) as a power series in the dimensionless coupling
constant, '

(DY Nw
Flu) = F(0) = Y SV (5.13)
N=1 ‘
where
Iy = / (®(51)®(sy) . .. B(sn))odss . . . ds (5.14)

involves connected correlation functions in the unperturbed theory. But it is
easy to see that for a generic field theory, this power series can be formal at
best. The scaling dimension of the integral Iy is 1 — Ny. Hence for y > 0,
each individual term Iy ~ LY¥~! of order N > 1/y diverges for L — oo,
although the sum (5.13) is of course finite. This infrared divergence is the
reason why the perturbation series has to be renormalized. For y < 0, already
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I, is ultraviolet divergent, i.e. the integral

Wy) = /0 " 1sp — 81| f (182 — s1]/L)ds, (5.15)

does not exist because of the singularity of the integrand (5.8) as sz — 1.
This singularity appears as a pole

o) = 5 o) (5.16)

for y \, 0. The crucial property of renormalizable theories is that this dif-
ficulty can be overcome by a nonlinear change of variables. To this end, we
insert (5.7) and (5.8) into (5.13),

F(u) = F(0) = —(®)o L*[u — 11 + O(x*)], (5.17)

and call the expression in square brackets on the r.h.s. the renormalized
coupling constant u:

U=u—1u®+ 0. (5.18)

Then it is obvious that F" as a function of U does not have any singularities;
we simply have
F(U) = F(0) = — () LU , (5.19)

where (@), L is a constant of the free theory by (5.7) and hence independent
of U. Instead, the transformation of variables (5.18) becomes singular as
y — 0. At first sight, this just looks like a dirty trick. In order to see
what really happens, we carry out the change of variables (5.18) in the flow
equation (5.12):

BU) = S Bu) = yU — 1yl + O(U). (5.20)

For the particular system of this example, this equation is even valid exactly,
i.e. the power series in U terminates at second order 8.

$This is because (5.13) is a geometric series,

u

Flu) - F(0) = (@) F

?

and hence U = u/(1+ wu) exactly. In other regularization schemes, the perturbation series
is summable in a similar way [39].
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As shown in fig. 4 (b), the stable fixed point u = co for y > 0 appears at
a finite value )

U= (5.21)
of the renormalized variable U. This is only possible because the transfor-
mation of variables (5.18) is nonlinear. For small values of ¥, the fixed point
U* approaches the free fixed point U = 0; the two fixed points coalesce for
y=0.

Figs. 4 (a) and (b) describe the same flow field on the space of interacting
theories, albeit in different “coordinate systems”. Hence the singularities
of the free energy in the unrenormalized variable u can be understood as
coordinate singularities [38]. In general relativity, coordinate singularities
are well known; the most famous example is Schwarzschild coordinates at
the event horizon of a Schwarzschild black hole. They can be removed by
choosing a suitable coordinate system. Renormalization is nothing but the
choice of a suitable coordinate system on the space of interactions.

The large-scale behavior for y > 0 can be read off more easily from the
renormalized theory. For attractive coupling (U < 0), the flow of fig. 4 (b)
does not have a fixed point and the absolute value of the coupling constant
grows indefinitely as L — oo: the system has a finite correlation length. It is
in a bound state, the average transversal distance of the two strings remains
finite. For d’ = 1, we can check this by looking at the quantum-mechanical

Hamiltonian
. 52 52
H=—xF - — — )
53 2 + 96(22 — z1) (5.22)

resulting from the action (5.2): the ground state in the relative coordinate
z) — 23 is always a bound state for g < 0.

For repulsive coupling (U > 0), the behavior on large scales is governed
by the fixed point U*. At this fixed point, the field ® acquires a new scaling
dimension z* determining the power law decay of its correlation functions
(5.7), (5.8) etc. To show this, we express the flow of the free energy in both
renormalized and unrenormalized couplings,

dF dF
LoyF = d—U_ﬂ(U) = E{;ﬂ(u) : (5.23)

where U and u are linked by eq. (5.18). We obtain the asymptotic behavior
for
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large L
Bu(L)) = yu(L) ~ L* (5.24)

and
BU(L)) = y*(U(L) = U") ~ LV (5.25)
with * = (d/dU)BU)|y=v» = —y = (d' — 2)/2 from the linearized flow
equation. (In a generic field theory, there are terms of cubic and higher order
in the beta function; hence y* = —y + O(y?).) Since dF/dU is a constant by
(5.19), we have

dF | v (5.26)
du
and | dF
(P) ~ Ldg ~ L (5.27)
with
r=1-y". (5.28)

Hence the correlation functions of the field ® decay faster than for a free
system since the repulsive interaction effectively suppresses intersections of
the two lines. For d’ = 1, if intersections are completely suppressed, the two
lines can be regarded as the world lines of two particles obeying the Pauli
exclusion principle [40]. Thus the fixed point U* describes a system of free
fermions. It is easy to verify that the exponents y* = —1/2,x* = 3/2 are
indeed characteristic of free fermions. Consider the fermionic analogon of the
operator ®, namely ® = §(¢o — ¢ — a), where a is some fixed microscopic
transversal distance. The expectation value of ®(s) in a two-particle state

X0
02N = [ Ix(a1,21 +a)dz (5.29)

has the scaling form L=Y/2|f(aL~"?)?, where f(g) ~ ¢ due to the antisym-
metry of the fermionic wave function.

6 Field-theoretic renormalization II:
More general interfacial problems

In the previous section, we have examined the effect of a short-ranged inter-
action on a system of two directed strings in D = 1 4+ d’ dimensions using
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methods of renormalized continuum field theory. We have found a new uni-
versality class that describes the large-scale behavior for d’ < 2 and can be
interpreted as an effective low-energy Fermi theory for d’ = 1. This is the
reason why quite a few problems in D = 1+ 1, e.g. the statistics of steps on
crystal surfaces, may be formulated in terms of (interacting) fermions.

In this section we generalize this approach in order to treat a variety
of interfacial problems most of which are not so readily accessible by other
means [7, 11, 14]. The strategy is always to identify the continuum fields
relevant to the problem, to write down their operator algebra and hence to
infer the renormalization group equations to leading order.

6.1 Long-range interactions

Consider again a system of two directed lines in D = 1 + 1 dimensions. An
obvious way to generalize the interaction discussed in the previous section
is to allow also for long-ranged forces in the transversal direction. This is
described by the action

H = Ho() + Ho(2) + [I(g — 9.) @ +h,lds (6.)
where
@(s) = V75 (2(5)) (6.2
and
O EC I (63

describe the short-ranged part and the long-ranged tail of the interaction
potential. (The numerical factors are only a matter of convenience.) The
distinction between these two parts is not unique since it involves some mi-
croscopic scale a;. Therefore the field ® has a nonuniversal critical strength
gc that depends on a;. The field-theoretic renormalization for this system

follows [14]; it is carried out using the approach of [7].

The fields ®(s) and Q,(s) have scaling dimensions
r=

% (6.4)

and p
5 (6.5)
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respectively. The conjugate coupling constants have dimensions y = 1/2 and
y, = 1 — z,, we define the dimensionless couplings u = gL¥ and v = hL%.
The extended operator algebra is

@(S])@(Sz) = C§¢|S2 — 81|-:c (I)(Sl) + ... (66)
D(51)Q(s2) = Chalsz — 51| (s1) + ... (6.7)
Q(s1)(s2) = Clalsy — 51|24 d(s)) + C% Qp(s1) + ... (6.8)

with C2, = 1,C%, = 27°nV2T((1 - p)/2),C2, # 0 and C% = 1/4. The
structure constants not explicitly written are zero, in particular Cy, and Cg.

The resulting renormalization group equations for the renormalized couplings
U and V (= v) are

LoLU = Bu(U, V) = (y—2C2.V+O(VH)U -C2U?,  (6.9)
L8LV = ﬁv(U, V) = ypV . (610)

For p # 2, the critical roughening transition is always determined by
the Gaussian fixed point U = V = 0. For a generic perturbation of the
form g® + hQ,, e.g. the critical exponent v, of the correlation length & is
determined by the more relevant of the two fields, i.e. vy = 1/y, = 2/(2—p)
forp<landyy=1/y=2forp>1. ,

The case p = 2 is more involved. The flow of U and V is shown in fig.
5. The field €, is marginal at the Gaussian fixed point, and the structure
of the operator algebra implies that it remains marginal perturbatively in U
and V to all orders: By (U,V) = 0. Hence the Gaussian fixed point is part of
the fixed line U = 0, which is parametrized by V. Along this line, the scaling
dimension of ® varies according to

r(V)=1-yV)=2+2C:V +0(V?) (6.11)

with C3, = —1/2. Perturbation with the relevant coupling U > 0 gener-
ates, just as in the previous section, a crossover to the stable fixed point
U*(V) = y(V)/C2, (the beta function fy (U, V) is again strictly quadratic in
U). Hence the free Fermi fixed point U*(0) is part of a fixed line as well. This
line is the fermionic analogon of the fixed line U = 0; it describes noninter-
secting lines with (1/2%)-interactions. The scaling dimension of the irrelevant
field ® varies according to

(V) =1-y"(V)=1+y(V). (6.12)



196 M. Lissig and R. Lipowsky

|
l
Y
|
|
A
A

—_— e —— P —y— —f— —
————  —\— = —

|
:
9 T

SRERSERA RN

Fig. 5. Renormalization group flow for the couplings U and V' conjugate to the short-
ranged part and the long-ranged part of the potential, respectively, in the case p = 2. The
coupling V remains strictly marginal. It generates the line of fixed points U = 0 describing
interacting bosonic lines and the line U = U*(V) describing interacting fermions.

One can show [27] that for V < —1/4, the system is always in a bound
state. Hence at that value of V, the two lines of fixed points have to join, an
example of a parabolic renormalization group flow [26].

6.2 A system of many lines

Consider a system of many directed strings in D = 1 4+ d’ dimensions. We
follow the discussion of [11]. In real systems, the interaction between particles
is certainly more complicated than the simple pair force considered above.
Typically, the force between two lines is screened or enhanced by the presence
of further lines. Casimir-type many-body forces (which may be screened at
some distance) arise from the coupling of the strings to the surrounding
medium, e.g. a correlated fluid [41]. It is convenient to use a description
in second quantization, which is valid for an arbitrary number of lines. If
we restrict ourselves to short-ranged interactions, such a system may be
described by the continuum Hamiltonian

H= / rqﬁT (r, ) (Bep(r, s))d%r + > gm®Pm(s) . (6.13)

m>2
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which is independent of the number of strings. (This number only enters the
in- and out-states and hence does not affect the renormalization.) The Bose

creation and annihilation operators ¢ and qST obey canonical commutation
relations and have dimension d'/4. The normal-ordered vertex

On(s) = — [ (@0, )l )’ (614

describes the interaction of m strings at a common intersection point s. (The
lowest vertex ®, has been denoted by ® in the last section.) In the space of
these interactions, we will find a whole sequence of new universality classes
describing the roughening of a finite number of strings.

The vertices ®,,, and their conjugate coupling constants g, have scaling
dimensions 7

T = (M — 1)—5 (6.15)
and Y, = 1 — T, respectively. One shows that the vertices form a short-
distance algebra of the form
k-1
Dp(s1)Pi(s2) = >, Clso—sp| *FH=m=DE2p (0)4...;  (6.16)

m=max(k,l)

each term corresponds to a real-space Feynman diagram with k+ ! — m lines
joining the two vertices. The combinatorial factors are (normalized such that
C’222 =1)
o/ — m! (E4l=m)
(m = k)l(m - Dk +1~m)! 2

The correlation functions of the vertices ®,, are again defined by means
of an infrared regularization; its scale parameter L is used to define the
dimensionless coupling constants u, = ¢gnL¥" and governs the renormal-
ization group flow. The regularization involves analytic continuation in d’
and consists in absorbing the singularities in the perturbation expansion for
F(ug,us,...) into renormalized couplings U,,. The fixed points of the flow
equations LOLU,, = B (Us, Us, . ..) determine the universality classes.

First, the short-distance singularities of the series F'(ug,0,...) at yo = 0
(i.e. d’ = 2) are determined by the operator product

Do(51)Pa(s2) = |52 — 51|77 Pa(s1) + ... (6.18)

(6.17)
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and lead to the beta function
Be(Uz) = yoUp — U (6.19)

for the renormalized pair coupling (5.18), as discussed in the previous section.
This coupling constant renormalization makes F finite as a function of U;, but
singularities still exist in the dependence on the higher couplings um(3 < m).
The singularities linear in w.,, correspond to singularities of the correlation
functions (... ®,,(s)...) as a function of uy only. By inserting the operator
product

(I)m(Sl)(I)g(Sg) = C:,’:2|82 - Sll_z2 (I)m(Sl) +... (620)

into the perturbation series, we obtain

Fug, um) = F(tg,0)—(®rm) L™ [ttry— 20T t(y)ttmiz+O(umu3, umuk) (6.21)

where 3 < k < m and «(y) denotes the integral (5.15). We remove these
singularities by defining

Up, = tm — 2C7% ¢ Upng + O(Uml3, UmU) (6.22)
which leads to the beta functions
ﬁm(UQ, vy Um) = ym(Uz)Um + O(UkUm) (623)

with .
| Yn(Uz) = ym — 202Uz + O(U3) . (6-24)

For m > 3, (6.24) does not terminate at first order. In d’ = 1, however, the
contribution from higher orders miraculously vanishes at the fermionic fixed
point U = 1/2, so that the infrared scaling dimensions resulting from (6.24),
(6.17), and (6.19),
m? —1

2 )
are exact. It is easy to show that they are precisely the scaling dimensions
of the fermionic multi-particle operators

T =1 — g (UF) = (6.25)

., (t) = % / f[ wT(r + a;i)yY(r + a;)dr, (6.26)



Universal Aspects of Interacting Lines and Surfaces 199

Us
/

Fig. 6. The renormalization group flow in the space of two- and three-body coupling
constants Us,Us has three fixed points. The free Bose fixed point ( o) describes the
roughening transition driven by two-particle interactions, the free Fermi fixed point (e)
the unbound phase of nonintersecting lines, and the interacting Fermi fixed point (4) the
roughening of fermionic lines driven by three-particle interactions.

where a; are fixed microscopic distances 1.

The full beta function for Us now follows in a similar way from the sin-
gularities in the series F'(ug,u3) at ys = 0, which are determined by the
operator product

@3(81)(1)3(82) - C3|Sl - S2‘|—$3 @3(81) + ... (627)
(with Cs = CZ;). We obtain
Bs(Us, Us) = (ys — 3Uz)Us — C3U3 . (6.28)

In general, it follows from (6.16) that the beta function Bm(Us, Us,...) de-
pends only on the Uy with k < m.

Fig. 6 shows the renormalization group flow in the space of two- and
three-string couplings given by (6.19) and (6.28) for ' = 1. It has three
fixed points: the Gaussian fixed point U, = Us = 0 describing free bosonic
lines, the free Fermi fixed point U = y,,Us = 0 discussed in the previous
section, and the new fixed point U, = y,, Us = 73/C3, a theory of interacting
fermions. The free Fermi fixed point is completely stable; all short-ranged

YThese operators were first discussed in [31, 32] without the explicit use of free fermions.
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interactions are irrelevant at this fixed point. Hence weak forces do not
alter the asymptotic behavior at large distances. The new fixed point is an
unstable fixed point. It describes a critical roughening transition at finite
three-particle interaction strengh that marks the transition to a fermionic
bound state. From the foregoing discussion it is clear that this fixed point
is just the first member of a whole family of fermionic universality classes
represented by fixed points of the higher multi-particle interactions ®,,. Thus
the interplay of attractive and repulsive forces generates a rich scenario of
universality classes of interacting directed lines. We emphasize again that
this scenario applies to an arbitrary finite number of lines.

6.3 Interfaces in general dimensionality

In this section, we study interfaces in D dimensions, i.e. directed manifolds
of dimension d that are embedded in a space of dimension D = d + 1 and
are described by single displacement field z(s). We are again interested in a
pair of such manifolds coupled by a short-ranged interaction

H(z1, 22) = Ho(21) + Ho(z2) + / V(22(s) - 21(5))dd5 . (6.29)

But now we allow for an internal structure of the manifolds that results in a
more complex functional form of the potential V(z) with possibly more than
one extremum. In the space of these general short-ranged potentials, we will
again find a whole family of fixed points that represent universality classes
of critical roughening. We follow the treatment of [7].

In the continuum limit, where the microscopic range a of the potential
approaches zero, we expand a generic potential in the basis of scaling fields

Po(s) = Vir ( )aé(z(s)) (a=0,1,2,...). (6.30)

0z(s)

(In particular, potentials with a single extremum are described by the field
®y, which has been called ® in sect. 5.)
These Gaussian fields have canonical scaling dimensions

Zo = (@ +1)(, (6.31)
their conjugate coupling constants have dimensions
a+3 4
o= d— a:————<d—2 ) 32
Y v 2 + a+3 (6-32)
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In any dimension d < 3, only finitely many of these fields are relevant; they
span the space of bona fide renormalizable binding potentials. The fields
&y, P, ... are even, the fields ®;,Ps,... are odd under the Z,-symmetry
z — —z of the Gaussian theory.

In order to define correlation functions of the ®,, we again compactify
the displacement field to a circle of circumference L; = L¢. (Alternatively,
we could add a “mass term” [ u22%d% to the action (6.29).) ;From the
short-distance structure of the correlation functions we extract the operator
algebra

D, (51)Ps(s2) ZUY sz — 81| 7" TID,(s1) + .. (6.33)
with coefﬁcients

—69 ~lla vy — 61 - 62
Cap = Z Z )7 (-2)7He ) () (g) R 639

=0 6=

if o + B + v is even; otherwise they vanish by symmetry. c(é) is defined as
(6 — 1)!Vif & is even and 0 otherwise, and only terms with é; + é; < m are
included in the sum.

Consider the perturbation series F'(u,) for a given symmetric potential
., (v = 0,2,...). The coupling constant g, is relevant if d is larger than
the borderline dimension d, =2 —4/(y + 3). We now use d instead of d’ as
analytic parameter to regularize this series. The ultraviolet singularities of I
are determined by the operator product ®.,(s;)®,(sz), additional singularities
appear at higher order. For small positive y,, the terms

D (51)Py(s2) = ...+ Chlsg — 1|25 By (s1) + . ... (6.35)

with o < y generate power-like singularities proportional to a(®~Y¢*%r if the
integral is defined with a short-distance cutoff a. They only lead to a cutoft-
dependent shift in the critical values of g, and are automatically subtracted
if the integral is defined by analytic continuation to higher dimensions. The
term

D, (51)Py(52) = ... + C7,|s2 — 51| 7@, (51) + ... (6.36)

generates a pole in y, which is to be absorbed into the definition of the
renormalized coupling U,. Hence we obtain the beta function

LU, = B (U,) = y, Uy — 2 SCy, U+ 0wy), (6.37)

i A
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where s, denotes the surface of the d,-dimensional unit sphere. It has the
infrared fixed point U} = (2/5,C1, )y, + O(y3).

Additional singularities appear in the perturbation expansion of the cor-
relation functions as a function of Us; they determine the new infrared scaling

dimensions N
2C

Th = To + WO:% +0(2) . (6.38)
Thus for each v = 0,2,..., we obtain an interacting continuum field

theory 7, that describes universal long-distance behavior with a potential
®.,, at the critical roughening point above the borderline dimension d,; below
that dimension, the fixed point 7, is unstable and, at least for a sufficiently
weak potential strength, the long-distance behavior of the system is Gaussian.
The theory 7y governs the scaling of an unbound interface subject to a purely
repulsive potential, it is the dimensional continuation in d of the free Fermi
fixed point in D = 1+ 1 discussed above. It has been shown rigorously that
this theory is renormalizable to all orders [42]. The higher theories 75,7y, . ..
form a hierarchy of multicritical universality classes: the fixed point 7, has
the ~ relevant scaling fields ®g, ®,,...,®,-; (the field ®,,4, is redundant
and the fields ®,, @42, Pyys,... are irrelevant), and we expect a series of
cross-over phenomena 7, — Ty_o — ... —> Tp.

This hierarchy of universality classes mirrors in a remarkable way the
well-known series of bulk multicritical points in Ising sytems. The latter
series is represented by actions

H= / (V) +¢,07d%c  (v=4,6,...) (6.39)

in terms of the local order parameter ¢(r). Nontrivial renormalization group
fixed points bifurcate from the Gaussian fixed point at borderline dimensions
D, = 2+ 4/(v — 2) and describe fluctuation-dominated critical (y = 4),
tricritical (v = 6) or higher multicritical behavior below that dimension (see
fig. 7). In D = 2, infinitely many such fixed points exist; they form the
well-known series of minimal conformal field theories [43]. The status of the
universality classes 7, in d = 2 remains a challenging open question. Are
they related to conformal field theories as well?
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Fig. 7. Fluctuation-dominated universality classes bifurcating from the Gaussian theory.
The series of Ginzburg-Landau theories with monomial interactions ¢ (y = 4,6,...) has
borderline dimensions Dy, = 2+ 4/(y + 2). These theories are well-defined in D = 2,
where they are the series of minimal conformal field theories. The series of roughening
transitions 7, (y = 1,2,...) has borderline dimensions d, = 2 — 4/(y + 3).

6.4 QOutlook

As the discussion in this section shows, interface criticality can in many
cases be understood on an equal footing with bulk criticality, namely as a
renormalized continuum field theory (living in the dimensionality d = D—1 of
the interface) whose correlation functions satisfy a well-defined short-distance
algebra. :

However, it is as yet difficult to incorporate transitions of (d = 2)-
dimensional interfaces (which are only logarithmically rough without in-
teractions) into this framework. In this dimension, conformal field theory
should come into play. Further questions arise from the breaking of the
Zs-symmetry e.g. for wetting transitions.

A related case of interest is that of membranes, i.e. manifolds governed
by bending rigidity instead of surface tension. Even if we consider mem-
branes below the persistence length (so that a gradient approximation is
valid) the difference in the kinetic part of the action is expected to introduce
modifications to the scenario described here.
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Perhaps most importantly, criticality of directed lines in random media
(which is related to criticality of nonequilibrium growth models) can be for-
mulated in replica language in much the same way as the problems discussed
here. Whether it can be understood as a proper renormalized field theory
remains to be seen.
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