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wetting and related phenomena). 

Abstract. - Bundles of strings which interact via short-ranged pair potentials are studied in two 
dimensions. The corresponding transfer matrix problem is solved analytically for arbitrary string 
number N by Bethe ansatz methods. Bundles consisting of N identical strings exhibit a unique 
unbinding transition. If the string bundle interacts with a hard wall, the bundle may unbind from 
the wall via a unique transition or a sequence of N successive transitions. In all cases, the critical 
exponents are independent of N and the density profile of the strings exhibits a scaling form that 
approaches a mean-field profiie in the limit of large N .  

In the context of condensed-matter physics, strings are essentially l-dimensional objects 
which are i) directed, in the sense that their tangent vectors point, on average, into a certain 
direction, and ii) are governed by a finite line tension. Physical examples are domain walls in 
adsorbed monolayers [l], steps or ledges on crystal surfaces [2], vortex lines in type-I1 
superconductors [3], stretched polymers [4] and presumably some polyelectrolytes [5 ] .  Two 
different ensembles of strings have to be distinguished: i) systems with a fKed density of 
strings and ii) systems with a fixed number N of strings, which are the topic of this letter. 
If the strings have attractive interactions, they may at  low temperatures be bound together 
to a bundle. Such bundles of strings have been studied by numerical diagonalization of the 
transfer matrix [6,7], in a local density functional theory [8], by mapping onto a quantum spin 
chain [9], in a heuristic scaling picture [lo], and by field-theoretic renormalization group 
methods [ l l ] .  

In this paper, we study bundles of N strings which interact via contact pair potentials. 
Such a system of strings can be mapped onto a system of N quantum-mechanical particles 
interacting via the same pair potentials. For N strings in two dimensions, one is then led to 
consider a Schrodinger-type equation in N dimensions which can be solved analytically for 
arbitrary N using the Bethe product ansatz (see e.g. [12] for a review). Often, real strings do 
not intersect which can be taken into account by imposing Fermi statistics on the 
particles [4,1]. Here, we take a different avenue. We modify the contact interaction so as  to 
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impose a preferred ordering on the strings while preserving integrability. Hence we 
construct a one-parameter  famiZy  of Bethe-ansatz solutions that interpolate between 
intersecting and non-intersecting strings. 

In this way, we consider two cases: i) Free bundles consisting of N identical strings 
interacting via identical pair potentials. For this case, we find that the bundle undergoes a 
unique unbinding transition which is characterized by universal i.e., N-independent critical 
exponents. We also calculate the density profile of the strings for N = 2,3  and 4 and within a 
mean-field approximation. For large N, the density profile seems to converge towards the 
mean-field profile, see fig. la) below. ii) Bundles interacting with a rigid wall. Extending the 
corresponding Bethe ansatz for intersecting strings due to Kardar [13], we find a complex 
phase diagram, see fig. 2 below. Depending on the relative strength of the string-string and 
the string-wall interactions, the bundle may unbind from the wall via a unique transition or 
via a sequence of transitions. In all cases, the critical exponents are universal, i.e. 
independent of N. 

The free bundle consists of N strings with identical stiffness K. The strings are infinitely 
extended and run, on average, parallel to the x-direction. Their configurations are 
parametrized by the displacement fields I ,  (x) with n = 1, . . . , N. The effective Hamiltonian 
for the bundle is given by 

where V(1, - Z]) is the interaction potential for the string pair with n = i and n = j .  Since this 
model is l-dimensional, it can be studied by transfer matrix methods. In the limit of 
vanishing small-distance cut-off, one obtains a Schrodinger-type equation H;?i ({  I ,  }) = 
= E;?i<{ln}> with the Hamilton operator 

The strings interact with an attractive contact interaction Vo ( 1 )  = - vob(Z) with wo > 0. In 
order to model the behaviour of non-intersecting strings the potential 

( 2 )  

is added. This additional potential does not suppress all intersections, but favours a specific 
ordering of the strings. Therefore Vl leads to partially intersecting strings. The parameter wl 
controls the degree of asymmetry in the probability distribution of the separation variables 
1, - lj . In the limit of zero E ,  the potential Vo + V, leads to a pair of matching conditions for the 
wave function $ and its first derivative $'. Both functions are discontinuous at  1, - ZJ = 0; the 
height of the jump depends on go 2 v o K / T 2  and g, = v1 KIT' .  

Solving the Schrodinger equation for these matching conditions yields a localized ground 
state. The N-particle wave function is obtained by the simple product ansatz ;?io (11, . . . , 1.h~) - - (1 + gl  O(Z, - 1,)) exp [ - p I I ,  - lJ 1 ] with the transverse momentum 

' J  

(1 + g d 2  
1 + (1 +g1)2  * 

P = go ( 3 )  

For gl  = 0, one recovers the ground state for N intersecting strings [12]. The preferred 
ordering imposed to the strings for g1 > 0 is ll < . . , < In the limit of infinite gl , the wave 
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function vanishes for all other string permutations resembling, thus, the wave function of 
non-intersecting strings. The results presented in the following depend on the asymmetry 
parameter gl only through the transverse momentum p .  Therefore they remain unchanged in 
the limit of non-intersecting strings, i .e. for infinite g, , where p is given by p = go as follows 
from (3) .  

The free energy per unit length, f ( N )  = E o ,  is given by 

1 T2 
6 K 

f ( N )  = - - N(N2 - l ) p 2  - . (4) 

In the limit of large gl this expression agrees with the result in [9]. We now introduce a new 
set of variables { I , ,  . . . , I N } .  For a given permutation cr of the strings with < . . . < IS(?), In 
is given by I ,  E I,(,). In the limit of large zll , i .e. of non-intersecting strings, the mean position 
( I , )  is equal to the mean position in the original variables, ( I n ) .  The wave function $ o  is 
translationary invariant; the mean position (I,) is, therefore, calculated keeping Z1 = 0 fEed. 
The mean extension of the bundle is then given by IbU = ( I N )  - (Il) = ln(N)/Np for large N.  
The mean separation between neighbouring strings behaves as 3Zn ( I ,  + 1) - ( I , )  = 
= (2p (N - n)  n)- ' ,  with n = 1 ,  . . . , N - 1.  Both mean separations Ibu and AI, are characterized 
by the critical behaviour 

!!bu-&-P- ' ,  with $ = I .  ( 5 )  

The continuum description used here is justified as long as the mean separation between the 
inner strings is greater than the string thickness a , ,  which implies N<< q-. 

The string density,cN(Z) E ($o I 2 d(Z - I,) I$o) has been calculated for N = 2, 3,  4 (where 

the centre-of-mass coordinate was set equal to zero), see fig. la).  The results can be written 
in the scaling form , c N ( I )  = 2 p N 2 Q N ( 2 p N I ) ,  with the scaling function Q N ( x )  = 2 a ~ , ~  . 

Sexp [ - j l x  I 1, where aN, , = ( N  - l ) / N ,  a3, = - 1 / 3 ,  a4, = - 3/5, and a4, = 3 / 2 0 .  Note 

that dl ,c (I) = N implies dx Q ( x )  = 1. The mean-field density defined by p MF (I = ( I , )  - 

N 

n = l  

N - 1  

j = 1  

-1 0 
0.0- 

0 3 6 z  

Fig. 1. - a)  Density profiles for a free bundle of strings: the exact densities U N  - ,cN as a function of 
separation z - 1 for N = 2 , 3 , 4  strings together with the mean-field density 0 M F .  For increasing N ,  the 
exact densities seem to converge towards the mean-field profile. b)  Density profile for a string bundle 
interacting with a wall: the exact densities l2E' as a function of separation z - 1 for 2 C N S 7 together 
with the mean-field profile 0gi for y = - 0.95. The transition from the adhering bundle, regime (BN), 
to the free-bundle regime (FB) is located a t  ye = - 1. 
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- (1/2) l bu )  = /AZn has, in the limit of large N ,  an analogous scaling form with the scaling 
function 

Q.,(z) = ( 2  cosh(Z/2))-2 . (6)  

This mean-field density is identical with the density obtained by Helfrich in [8]. For large N ,  
the exact densities Q , ( x )  seem to converge towards the mean-field profile, see fig. la ) .  

The unbinding of N strings can be understood heuristically in the framework of an N-state 
model [lo]. If one makes the plausible assumption that locally bound triplets and 
higher-order multiplets of strings are less likely than locally bound pairs, one finds that the 
unbinding of the bundle is governed by the unbinding of string pairs. This explains that the 
unbinding temperature does not depend on N as has been observed in numerical studies for 
N = 3 and N = 4 [7,6]. On the other hand, these numerical studies lead to an N-dependent 
effective critical exponent +. The total interaction potential studied numerically contains only 
contributions from neighbouring pairs of strings. In contrast, the total interaction potential 
studied here contains contributions from all pairs. The difference corresponds to an 
effectively repulsive 3-string interaction. Such an interaction represents a marginally 
irrelevant perturbation and, therefore, leads to large corrections to  scaling which should 
explain the N-dependence found in the numerical work [ l l ] .  

Next, consider the unbinding of the string bundle from a wall. The N-string system now 
experiences an additional external potential consisting of an attractive well and a hard wall. 
This potential causes the wave function of the adjacent string to fall off as exp [ - qZl] (the 
possibility that more than one string is in the well is ignored). The ground-state wave 
function which is analogous to the solution for intersecting strings [13] is of the form 

with the transverse momenta pp) 
energy per unit length of N strings bound to the wall is 

q + Z(n - l ) p ,  where p is still given by (3). The free 

wheref(N) is the free energy per unit length of the bundle (4). The mean separation between 
neighbouring strings is AZ, = [ 2(N - n)(q + ( N  - 1 + n ) p )  I - ' .  

The state of the system is determined by three parameters: i) the parameter p of the 
string-string interaction; ii) the transverse momentum q resulting from the string-wall 
interaction; and iii) the total number N of strings. In fig.2 the phase diagram is displayed 
for N = 5. In regime (BN) given by i) q > - ( N  - 1)p  for p > 0 and ii) q > -Z(N - l ) p  for 
p < 0, all N strings are bound to the wall. For  p > 0, all N strings unbind simultaneously 
from the wall a t  q = - ( N  - 1)p. In regime (FB) with q < - ( N  - l ) p  and p > 0 the strings 
form a free (or unbound) bundle. For  p < 0, the strings unbind successively. The n-th string 
(counted from the wall) peels from the wall at  q = - 2(n - 1)p. For p < 0 and 0 < q < 
< - 2(N - l ) p ,  we therefore find N - 1 different regimes (B,) with 1 d n d ( N  - 1) strings 
bound to the wall and the remaining strings completely unbound. For  q < 0 and p < 0, one 
has the free-string (FS) regime. When the point p = q = 0 is approached from regime (BAL,), 
the strings unbind simultaneously from the wall as well as from each other. 

Across all phase boundaries, both the free energy f'"' and its first derivative af"' /aq are 
continuous whereas the second derivative i3*fcw) / 3 q 2  exhibits a discontinuity. Hence these 
transitions are of second order with the critical exponent x = 0 for the specific heat. At the 
phase boundary between (B,,.) and (BA%, ') the mean separation Lln with n < N are 
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Fig. 2. - Phase diagram for a bundle of N = 5 strings interacting with a wall. The parameter p measures 
the string-string interaction, the parameter q the string-wall interaction. In regime (Bn), n strings are 
bound to the wall with N - n strings diffusing freely. In the free-bundle regime (FB) the bundle is 
unbound with respect to the wall. The strings are completely unbound in the free-string regime 
(FS). 

continuous but their first derivatives 8 Aln / 3 q  exhibit a jump. The critical behaviour of the 
diverging length scales is the same at  each transition line, even at  the point p = q = 0, with 
the N-independent exponent + = 1. 

In a real system, regime (BN) and regime (FS) are attained at sufficiently low and 
sufficiently high temperatures, respectively. Depending on the relative strength of the 
string-string and the string-wall attraction, the temperature trajectory will mowe from (BN) 
to (FS) via the free-bundle regime (FB) or the intermediate states (Bn). In the latter case one 
has a sequence of N unbinding transitions. In the limit of infinite N ,  the sequence of critical 
temperatures T ,  ( n )  attains a finite value T, ( w ) [6 ] .  I t  now follows from the explicit expres- 
sion for the phase boundaries that 1 - (T,( w ) /Tc  (n))' - l/n' , with A = 1. 

For a bundle in regime (BN) the exact density has the scaling form ,ap)(L) = 
= 2pN2Q$")(2pN1, q / p ( N  - 1)). The scaling functions OE) (x ,  y )  are displayed in fig. l b )  for 
2 d N d 7 and y = - 0.95. Note that the phase boundary between regime (BN) and regime 
(FB) is located at  yc = - 1. The mean-field density defined by pgi ( L  = ( Z n ) )  = l / A l n  has the 
scaling form ,c g$ ( 1 )  = 2pN' s1 g$ (2pNL, q / N p ) ,  with 

(9) 

and x,, - ( 2  + y)-' In( 1 + y). The unbinding transition towards the (FB) regime is not 
correctly described by the mean-field density. As y approaches ye = - 1 from above, the 
mean separation of the bundle from the wall scales as - In (1 / I y - y, I ) within the mean-field 
theory, whereas the correct critical behaviour is given by - I y - y, 1 - 4 ,  with $ = 1. At the 
transition from regime (BN) to regime (BN - '), i .e . ,  at  p = - q/2(N - 1) the mean-field 
density exhibits a power law tail which is given by 

( 2 ,  Y) = (1 + y/2)'[ cosh(( 1 + y/2)(2 - 2")) I-' , 

where I,, l / q .  As before the continuum limit is only justified as long as the string 
separation ALn is larger than the string thickness a,. This leads to the crossover scale I ,  
defined by ,c ( 1  = L * ) = 1 /a I , The strings with 1 < L * are densely packed; the strings with 
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1 > 1 * are swollen and should exhibit the power law tail as in (10). The swollen region contains 
n,, - ( N / q a ,  )li2 strings. 

In summary, we have obtained analytic results on the unbinding transition and density 
profiles of bundles of (1 + 1)-dimensional strings both for a free bundle and for a bundle 
interacting with a rigid wall. The critical behaviour we have found here should apply to all 
pair potentials which decay faster than 1 - 2  for large 1 and hence belong to the strong- 
fluctuation regime. In general, many-string forces are present as well; for example, the force 
between two strings may be screened by a third string in between. Renormalization group 
arguments [ll] as well as the scaling picture of [lo] show that such screening forces do not 
alter the asymptotic scaling. With large attractive many-string forces, however, the 
transition is governed by a different fixed point, and the Bethe ansatz breaks downIll1. 
Further, the critical behaviour of fluid membrane bunches should be analogous to the 
behaviour of string bundles. Therefore, the asymptotic critical behaviour for N identical 
membranes should be governed by universal critical exponents. Another interesting problem 
are strings interacting via short-ranged pair potentials in d = 1 + d ,  dimensions. For  
d,  < 4, two strings exhibit continuous unbinding transitions [14], and one would expect that 
the associated critical behaviour also applies to string bundles with N > 2. An explicit 
calculation for this system would be quite valuable. 

* * *  
We thank F. JULICHER and R. NETZ for stimulating interactions. 
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