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Abstract. Bunches of membranes and bundles of strings
exhibit unbinding transitions from a bound state at low tem-
peratures to an unbound state at high temperatures. freely
suspended manifolds unbind continuously at the unique un-
binding temperature which is independent of . The
amplitudes of the critical singularities have a strong -
dependence, however, which implies that the critical region
for the continuous transition becomes very small and the
transition becomes very abrupt in the limit of large . If

membranes or strings are bound to a rigid surface, they
undergo a sequence of either two or of successive transi-
tions. In general, the rigid surface affects the contact prob-
abilities of the fluctuating manifolds. For effectively repul-
sive interactions, the contact exponent which governs the
probability for local pair contacts satisfies the scaling rela-
tion where and denote the dimensionality
and the roughness exponent of these manifolds.

PACS: 05.40; 64.60; 82.70

1. Introduction and overview

Lipid bilayers in solution often form bunches in which sev-
eral membranes are, on average, parallel to each other. Two
different geometries will be considered: (i) Freely suspended
bunches as shown in Fig. 1(a), and (ii) Bunches which adhere
to a rigid surface or wall, see Fig. 1b. The latter geometry
is obtained, e.g., by spreading a concentrated lipid solution
on a glass slide.

The structure of such a bunch can be characterized by
its density profile which depends on the mean separations of
the membranes within the bunch. If the shape fluctuations
of these membranes are strong, they drive the membranes
apart and lead to loosely bound or highly swollen states. In
fact, membranes which are bound together by attractive van
der Waals forces become completely unbound at sufficiently
high temperatures and, thus, undergo unbinding transitions
at a characteristic unbinding temperature [1].
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In the following, I will briefly review recent theoretical
work on these unbinding transitions. The main emphasis is
on the dependence of the critical behavior on the number
of membranes within the bunch. For a bunch of freely
suspended membranes, the transition from the bound to the
unbound state proceeds via a unique unbinding transition,
see Sect. 3 below. In fact, the unbinding temperature of
the freely suspended bunch turns out to be independent of

.  [2, 3]

In the case of membranes attracted towards a rigid sur-
face or wall, the transition depends on the relative strength of
the surface-membrane and the membrane-membrane attrac-
tion as explained in Sect. 4. There are essentially two pos-
sibilities: [3, 4] (i) If the attraction towards the substrate is
sufficiently weak, one has a sequence of two transitions: the
whole -bunch unbinds from the substrate at the unbinding
temperature and then undergoes the transition
towards completely unbound membranes at ; and (ii)
If the attraction towards the rigid surface is relatively strong,
one has a sequence of unbinding transitions and thus a se-
quence of unbinding temperatures with
At each of these transitions, a single membrane peels off
from the bunch.

From a conceptual point of view, it is very useful to
consider the case of membranes which do not intersect and
thus repel each other by repulsive hard wall interactions but
are kept together by an external pressure. This is described
in Sect. 3.1 and Sect. 4.1 for freely suspended membranes
and for membranes at a substrate, respectively. A precise
definition of the effective interactions which arise from the
renormalization by the shape fluctuations is given in the Ap-
pendices A and B at the end of this paper.

Unless stated otherwise, the membranes considered here
are tacitly assumed to be in a fluid state and thus to have van-
ishing shear modulus. The scaling properties of these mem-
branes are very similar to those of 1-dimensional strings. In
the context of condensed matter, the term string refers to a
fluctuating line governed by a finite line tension; one exam-
ple is provided by stretched (or directed) polymers. At the
end, I will briefly mention that the analogy between mem-
branes and strings breaks down in certain cases.
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Even though this paper is basically a review, it contains
a few original pieces: the -dependence of the effective
interaction between the outmost manifolds of the bunch or
bundle is carefully discussed in Sect. 3.1; a new scaling
relation for the contact exponent is derived, see (3.7); it
is argued that the unbinding transition of freely suspended
bunches becomes very abrupt and thus looks discontinuous
for large even though it is still continuous, see (3.13); and
the contact probabilities close to a rigid surface are shown
to exhibit a different scaling behavior, see (4.1).

2. Generic interactions of membranes

The separation of the membranes is governed by their effec-
tive interaction. This interaction is determined by the inter-
play of direct interactions arising from the forces between
the molecules and fluctuation-induced interactions arising
from the shape fluctuations of the membranes.

Molecular forces and direct interactions. The direct interac-
tion between two rigid membranes at separation can
be measured by the surface force apparatus consisting of
two mica surfaces onto which the membranes are immobi-
lized. [5] The simplest example is provided by lipid bilayers
which (i) are electrically neutral, and (ii) interact across a
water layer which contains no macromolecules or colloids.
In this case, the interaction potential is composed of a
repulsive hydration and an attractive van der Waals interac-
tion and has the schematic form as shown in Fig. 2a.

Lipid bilayers may become charged by adsorption of ions
from the solution or by dissociation of their head groups.
They then exhibit electric double layers which usually lead
to repulsive interactions between the surfaces as predicted by
the classical Poisson-Boltzmann theory. The combination of
van der Waals and electrostatic interactions often leads to a
potential barrier as shown in Fig. 2b.

If the two rigid membranes are subject to an external
pressure , one has , i.e., the disjoining pres-
sure, , arising from the direct interaction is balanced
against the external pressure

Fluctuation-induced interactions. Membranes immersed in
a liquid solution will undergo thermally-excited shape fluc-
tuations. On scales which are large compared to the size
of the molecules, the typical shape fluctuations should be
bending modes or undulations in which the surface area of
the membrane remains unchanged. Bending undulations of
wavelength are characterized by the roughness

where and denote the temperature (in en-
ergy units) and the bending rigidity of the membrane, re-
spectively. [6]

In the presence of another surface at separation , the un-
dulating membrane has less configurational entropy. Indeed,
all fluctuations of the free membrane which exceed a certain
wavelength are strongly suppressed by the second surface.
On the other hand, those fluctuations with a wavelength be-
low remain essentially unaffected by the confinement. If
both surfaces are flexible with bending rigidities and ,

the fluctuations of their separation is governed by the ef-
fective bending rigidity . One is thus led
to consider an ideal gas of uncorrelated membrane segments
which have a longitudinal size and a transverse extension

. The latter length scale is usually of
the order of the mean membrane separation

One may now allude to the equipartition theorem and
postulate that each such hump has a free energy
This implies that the hump free energy per unit (projected)
area behaves as [7]

for large . (2.1)

This free energy per unit area represents a fluctuation-
induced interaction between the membranes which leads to
the disjoining pressure . For two
identical membranes with , one has

From membranes to strings. The scaling arguments just de-
scribed for membranes may also be applied to 1-dimensional
strings with line tension . As a result, one arrives at the
fluctuation-induced interaction as was
first derived in the context of commensurate-incommensu-
rate transitions [8] and is implicit in some earlier work about
steps on crystal surfaces [9].

Comparison with the relation (2.1) shows that the fluc-
tuation-induced interaction for strings has the same func-
tional dependence on the mean separation as for fluid
membranes. Thus, one expects that the shape fluctuations
of strings and of fluid membranes have a rather similar ef-
fect on the direct interaction of these objects. This is also
predicted by functional renormalization which leads to the
same fixed point potentials for the unbinding transitions of
strings and membranes. [10] It will become clear below that
this analogy should indeed hold as long as the direct inter-
action exhibits a single minimum as in Fig. 2a.

3. N freely suspended membranes or strings

Now, consider a bunch of identical membranes which are
freely suspended in solution as in Fig. 1a. All membranes are
taken to have the same bending rigidity and each adjacent
pair of membranes interacts with the direct interaction
Two cases will be discussed: (i) Repulsive hard-wall inter-
actions corresponding to non-intersecting membranes which
are kept together by an external pressure; and (ii) Interac-
tions with an attractive potential well as in Fig. 2a. In the
latter case, the bunch undergoes an unbinding transition at a
characteristic unbinding temperature.

3.1. Repulsive Hard-wall interaction

First, consider the simple case of membranes which repel
each other by repulsive hard wall potentials as given by

for  (3.1)
for

As explained in Appendix B, these membranes may be kept
together by an external pressure or by imposed bound-
aries. These different constraints define different ensembles
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Fig. 1a,b. Two types of membrane bunches: a Freely suspended bunch, and
b Bunch adjacent to a rigid surface

Fig. 2a,b. Direct interaction arising from molecular forces as a function
of the membrane separation : a Hydration and van der Waals interaction
between electrically neutral membranes; and b Hydration, van der Waals
and electrostatic interaction between electrically charged membranes lead-
ing to a potential barrier

in which one may study the renormalization of by
the shape fluctuations.

Computer simulations. If the bunch is kept together by the
pressure , the fluctuations drive the membranes apart in the
limit of small . This unbinding process has been studied
by Monte Carlo simulations for , 3 and 4.

Here and below, the mean separation of the two outer
membranes will be denoted by . The mean separation
of two adjacent membranes labelled by and within
the bunch is expected to be of the order of
In fact, in the limit of small , all separations are found
to become equal to , and is found to be independent of

within the numerical accuracy of the simulations.
The behavior of as a function of determines the

fluctuation-induced interaction via ,
see (B.2) in Appendix B. In all cases studied numerically,
one finds that

for large . (3.2)

For , the data of [11] imply
. For and , the Monte Carlo data lead

to the estimate and
respectively. [12, 13] Thus, within the numerical accuracy
of these estimates, these three values are identical.

Another geometry which has been studied by MC sim-
ulations are identical membranes with bending rigidity

confined between two rigid walls. [14, 15] The separa-
tion of the two rigid walls was taken to be so that
the mean separations of all nearest neighbor surfaces are of
the order of . As explained in Appendix B, the free energy

density within this fixed slab ensemble leads to another defi-
nition of the fluctuation-induced interaction . The dimen-
sionless coefficient found from these simulations was

, , and for , 3 and
5 membranes. [14] Extrapolation of these data to large
gave the estimate which is somewhat smaller
than but comparable with the value
as obtained in the pressure ensemble.

In [7], Helfrich had originally obtained three different
estimates for the coefficient . One of these estimates was

which is exactly twice the value as obtained
from the pressure ensemble. The value was
also deduced experimentally from X-ray scattering data for
lamellar phases in oil-water-surfactant mixtures. [16] At
present, there is no explanation for this discrepancy.

Bundles of strings. A bundle of strings in two dimen-
sions is equivalent to quantum-mechanical particles. If
the strings experience hard wall potentials corresponding
to the non-intersecting constraint, these particles are free
fermions. [17] One convenient way to confine the thickness
of the string bundle is to put them onto a strip of width

and to use periodic or fixed boundary conditions in the
perpendicular direction.

The free energy of such a string system is easily cal-
culated since it is equal to the quantum-mechanical en-
ergy of the corresponding free fermion ground state. This
free energy can again be used to derive an explicit ex-
pression for the fluctuation-induced interaction , see Ap-
pendix B. For both types of boundary conditions, one ob-
tains but with somewhat different co-

efficients . For periodic boundary conditions, one has

for odd
(3.3)

for even

For fixed boundary conditions, on the other hand, one finds
[14]

(3.4)

Thus, for large , both boundary conditions lead to the
limiting value

For , one can also calculate the free energy when
the strings are confined by the external pressure which
leads to the coefficient . The corresponding values
for have not been calculated in the pressure ensemble
but it seems plausible that the limiting value for large is
again given by as for periodic and fixed strips.
Thus, for strings in the pressure ensemble, the coefficients

should vary from down to , i.e.,
by about 15% which should be clearly visible in numerical
studies.

Contact probabilities. In the case of hard wall interactions,
the heuristic scaling picture described in Sect. 2 above leads
to the correct —dependence of the renormalized interaction.
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One must be careful, however, not to draw wrong conclu-
sions from this picture. For example, it is tempting to use
this picture in order to estimate the contact probability of
two adjacent manifolds. Since the scaling picture suggests
one collision per hump, one would conclude that the prob-
ability for local pair contacts scales as both for
membranes and for strings.

This is, however, wrong. For two interacting strings, the
probability distribution for the separation is equal to the
squared wave function of the ground state which vanishes
as for small . This implies that the contact probability

vanishes as for large with the contact
exponent . [18, 19] Thus, 2-string collisions or
locally bound pairs of strings are less frequent than suggested
by the scaling picture.

For bundles of non-intersecting strings corresponding to
free fermions, one may calculate the contact probability
for n-string collisions with . Using the confinement
by a periodic strip of width , one finds

with (3.5)

from the ground state wave function of the free fermion
system. [20, 21]

Using the analogy between strings and membranes, one
predicts that the contact probability for n-membrane col-
lisions behaves as with . The value

has been recently confirmed by Monte Carlo simula-
tions. [22]

The contact exponents as given by (3.5) can also be
derived from a careful interpretation of the necklace model
for identical strings. [23, 21] In this model, one considers
all configurations of strings which consist of alternating
segments, say A and B: In the A segments, all strings
are strongly bound together; in the B segments, all strings
are unbound from one another. [24, 25] This is equivalent
to a bundle of strings which experience repulsive hard wall
potentials between nearest neighbors and an attractive short-
ranged -body potential. The critical behavior within this
model can be understood by mapping it onto the intermediate
fluctuation regime for two strings. [23] If the short-ranged

-body potential is not able to bind the bundle together,
their contact probabilities are again given by (3.5). [21]

The necklace model for three strings can also be solved if
the strings have different line tensions , and . [26, 27]
This model can be mapped onto a random walk in a wedge
geometry where the wedge angle satisfies and

. If the 3-body
potential is not able to bind the strings together, the contact
exponent for three-string collisions is given by [21]

(3.6)

which depends continuously on the ratios of the line ten-
sions.

Effective interaction of the two outer manifolds. Let us now
focus on the two outer manifolds of the bunch or bundle and

let us consider the effective interaction between these two
outer manifolds arising from the confinement of the
interior ones. As before, the mean separation of the two outer
membranes is denoted by

It is intuitively clear that the effective interaction arising
from the intermediate manifolds must be repulsive. Within
the heuristic scaling picture, it seems plausible to assume that
the effective interaction between the two outer mani-
folds decays as . I now want to point out, however,
that the strength of this effective interaction cannot be defined
in a unique way.

First, let us identify the effective interaction with
the renormalized interaction as defined in Appendix
A, see (A.4). This implies the disjoining pressure

with and
. Using , one has

with and thus
for large . The latter -dependence also fol-

lows from the free energy of strings confined to a strip
of width

On the other hand, one may also focus on the con-
tact probability for -string collisions. This probabil-
ity will now be identified with the probability for the
two outer strings which interact via the effective interaction

with . For sufficiently large , such
an interaction belongs to subregime (C) of the intermediate
fluctuation regime for two manifolds. [10] In the latter case,
one obtains the contact probability with

and . If this is set equal
to the probability for -string collisions of the whole
bunch, one has which is an implicit
equation for the potential strength . It then fol-
lows that with
which is the same expression as for the necklace model of

strings [23].
Note that the coefficient as obtained from the contact

probability behaves as for large in contrast
to the behavior as obtained from the disjoining
pressure. Therefore, the global behavior of the two outer
manifolds as described by their mean separation and
their local behavior as described by their contact probability

cannot be derived from the same effective interaction.

Digression: Scaling relation for the contact exponent. In
general, the fluctuations of a -dimensional manifold in

dimensions are characterized by the roughness
exponent . The fluctuation-induced interaction then
decays as with for thermally-excited fluc-
tuations as considered here, and one has for small

with . In the context of the renor-
malization group, this follows from the fact that the term
represents a relevant perturbation which transforms accord-
ing to with scaling index under
renormalization. On the other hand, the contact exponent
which governs the probability for pair contacts is related to
short-ranged perturbations such as which transforms
as with scaling index under renor-
malization. More precisely, the contact exponent is given
by the scaling relation . [18, 21]
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At the "hard-wall" or purely repulsive fixed point, short-
ranged perturbations are irrelevant with

[28, 29] In fact, functional renormalization leads to an
irrelevant short-ranged eigenperturbation with scaling index

which is related to a translation of and reflects
the choice of origin for . [28] If there is no other short-
ranged eigenperturbation with scaling index , one
has and the contact exponent satisfies the
scaling relation

(3.7)

for hard-wall interactions in dimensions. For
membranes in three dimensions governed by lateral tension,
one has and (3.7) predicts as observed in recent
Monte Carlo simulations. [30]

3.2. Unbinding at a unique transition temperature

Real membranes such as lipid bilayers usually attract each
other by van der Waals forces. If the bilayers are electri-
cally neutral, their direct interaction has the form as shown
in Fig. 2a. At sufficiently low temperatures, the membranes
form a bound state. As the temperature is increased, the
shape fluctuations of the membranes grow and lead to un-
binding transitions.

Unbinding transitions were first predicted theoretically
from functional renormalization group calculations. [1] They
were experimentally observed by Helfrich and Mutz for
membranes composed of the sugarlipid DGDG. [2] In these
experiments, membrane bunches were observed which con-
tained between and membranes.

Now, one would like to know if the critical phenomena at
these unbinding transitions depend on the number of mem-
branes contained in the bunch. It turns out that the transition
temperature is independent of the number of membranes but
that the critical behavior shows a strong -dependence.

Numerical studies. The direct interaction is now taken
to be an attractive square-well potential defined by
for and by

for
(3.8)

for

which has potential range and potential depth . For
such a potential, completely analogous behavior has again
been found numerically for membranes and strings. In this
case, and 3 membranes have been studied by Monte
Carlo simulations and , 3 and 4 strings by numerical
iterations of the transfer matrix.

As a result, one finds that all manifolds of the bunch
or bundle unbind simultaneously at a unique transition. The
corresponding unbinding temperature, , turns out to be
independent of (if one uses the same discretization). Over
the accessible range of scales, the mean separations

of the adjacent manifolds labelled by and
with are well fitted by

(3.9)

where both the amplitude and the effective exponent
decrease with increasing

The numerical values obtained for the effective exponent
are and for and

membranes, respectively. For strings, the numerical
transfer matrix iterations lead to the effective exponents

for (in agreement with the exact value
for the asymptotic critical behavior) and

for . For , the inner separation is governed
by and the two outer separations and

by . Thus, the numerical studies lead to
effective exponents which depend both on and on .

-state model for unbinding transition. The fact that the
unbinding temperature does not depend on agrees
with the experimental observations [2] and can be under-
stood within the following scaling picture [31]. Consider the
case . Locally, three membranes (or strings) which in-
teract via short-ranged potentials can attain three different
types of configurations: (i) All three membranes are 'locally
unbound' if their separation exceeds the range of the interac-
tion potential; (ii) two of the three membranes form a bound
pair whereas the third one is 'locally unbound'; and (iii) all
three membranes form a bound triplet.

The probabilities for these three different local configu-
rations will be denoted by , , and , respectively,
and the corresponding excess free energies per unit area (or
unit length) by , , and , respectively. The ex-
cess free energy per unit area of the bunch is then estimated
as [31]

(3.10)

If the unbinding transition is continuous, the contact proba-
bilities and must vanish in a continuous way whereas

as the transition is approached.
It is convenient to use the extension of the bunch or

bundle as the basic length scale. For bending undulations,
the excess free energy per unit area of 'locally un-
bound' segments then behaves as . The lead-
ing term of the excess free energy , on the other hand,
arises from the locally bound pair which is determined by
the microscopic interaction parameters. Likewise, the excess
free energy is also determined by these parameters. For
strings interacting via the square - well potentials as defined
by (3.8), one has the estimates and

. It then follows from that the un-
binding temperature

Since it is intuitively clear that (for pair po-
tentials as considered here), one has to balance the first two
terms of the expression (3.10). This implies that a continu-
ous transition can only occur if decays more slowly than

. In addition, it also follows from this balance that
such a continuous unbinding transition occurs when
vanishes. Therefore, the unbinding temperature for is
the same as the one for

For general , one may define different sets of config-
urations. The first two sets again contain (i) locally unbound
states, and (ii) states with one locally bound pair and thus
one local contact; these states occur with probabilities
and , respectively. The  -th set with is taken to
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contain all configurations with local contacts. The
excess free energy of this -state model is then given by
terms corresponding to these states. The first two terms
have the same form as in (3.10) with . It
then follows that the bunch undergoes a continuous transition
provided that the contact probability decays more slowly
than . If such a transition occurs, the corresponding
unbinding temperature is again determined by as
for and

The scaling behavior of the contact probability and
thus the critical behavior of for small cannot be
determined within this -state model. Several methods have
been recently used in order to determine this behavior ana-
lytically: (i) Mean-field theories [32, 33]; (ii) Bethe Ansatz
solutions for strings with pair interactions [34, 4]; and (iii)
Field-theoretic renormalization for strings with many-body
interactions [20]. The results of the last two methods will be
discussed in the following.

Strings with pair interactions: Bethe Ansatz solution. As
mentioned, strings in two dimensions are equivalent
to quantum-mechanical particles: intersecting and non-
intersecting strings correspond to Bosons and Fermions, re-
spectively. If the strings interact via short-ranged pair poten-
tials, the corresponding Schrödinger equation can be solved
analytically for arbitrary using the Bethe Ansatz: If one
modifies the short-ranged potential, one can even construct a
one-parameter family of Bethe Ansatz solutions which inter-
polates between intersecting and non-intersecting strings [4].

The modified potential is characterized by infinitesi-
mal potential range and by the effective potential depth

which corresponds to the excess free energy
per unit length of local pair contacts. As mentioned,

for the square well potential defined by (3.8).
It then follows that the parameter

For this model, the mean separation of the two adjacent
strings labelled by and is given by [4]

with . (3.11)

Thus, all length scales diverge with the universal unbinding
exponent but exhibit an amplitude which depends
strongly on : The outer strings with and the in-
ner strings with are characterized by
and by , respectively. Thus, the inner strings are
more densely packed than the outer ones (as observed in the
numerical studies for ). The extension of the whole
bundle is found to behave as [4]

Using the above-mentioned relation between the effec-
tive potential strength and the parameters of the square-
well potential, the relation leads to the crossover
temperatures which are given by

(3.13)

Up to , the mean separation is comparable to
the microscopic scale ; for , this separation starts
to grow and to become dominated by shape fluctuations. It
follows from (3.13) that the crossover temperatures

of the two outmost strings differ from the unbinding
temperature by a term of order . Furthermore, the
crossover temperature for the separation of the inmost
string pair differs from by a term of order

This implies that the critical region in which the string
behavior is dominated by fluctuations becomes very small
for large : the outmost strings start to fluctuate for

and the inmost strings start
to become swollen for . There-
fore, for large , the unbinding transition will resemble a
discontinuous transition: the bunch will remain essentially
unchanged up to but will be completely unbound at
the slightly higher temperature

(3.12)

for large which is dominated by the mean separations of
the outer string pairs.

The above expressions for and have been ob-
tained in the limit of infinitesimal potential range and, thus,
apply to length scales which are large compared to the mi-
croscopic potential range (or to the thickness of the
string). Therefore, one must impose the restriction
for the expressions as given by (3.11).

Strings with many-body interactions. As described above,
the fits to the numerical data lead to both -dependent am-
plitudes and to -dependent critical exponents over the ac-
cessible range of length scales whereas the Bethe Ansatz for

strings leads to -dependent amplitudes but universal
critical exponents. For the small values of studied nu-
merically, the -dependence of the amplitudes gives rise to
a prefactor of order one which does not seem to explain the
different scaling behavior as observed numerically.

There is, however, a subtle difference between the total
interaction potential as studied numerically and the one used
in the Bethe Ansatz. The numerically studied potential con-
tains only contributions from neighbouring pairs of strings.
In contrast the total interaction potential
studied in the Bethe Ansatz solution contains contributions
from all pairs. The difference corresponds to a 3-string in-
teraction which must be added to and which
is effectively repulsive.

Three strings which experience repulsive 2-string in-
teractions but attractive 3-string interactions can be de-
scribed by the necklace model as mentioned above. If the 3-
string interaction is so attractive that it can bind the strings
together, the bundle will undergo an unbinding transition
which belongs to subregime (C) of the intermediate fluctua-
tion regime. This subregime is characterized by a probability
distribution for the separation fields which can be explicitly
calculated [27] and which decays as a power law for large
separations [10]. This implies that the mean separation of
the strings is discontinuous at the transition whereas higher
order momemts of the separation fields diverge in a contin-
uous way. Likewise, the contact probability for 3-string
collisions stays finite at the transition.

The interplay of 2-string and of -string interactions
with has been studied in a systematic way by field-
theoretic renormalization. [20] This calculation predicts that
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an attractive 3-string interaction represents a marginally rel-
evant perturbation and leads to a different universality class
for the unbinding transition which should belong to the uni-
versality class of the necklace model (for identical strings)
and thus to the intermediate fluctuation regime. A repul-
sive 3-string interaction, on the other hand, is marginally
irrelevant at the unbinding transition of the string bundle:
it should not change the asymptotic critical behavior but
should lead to large corrections to scaling on intermediate
scales. A quantitative analysis of this crossover remains to
be done.

From the analogy between strings and membranes, one
expects that membranes with weak 2-membrane potentials
and strongly attractive 3-membrane potentials should also
undergo unbinding transitions which are characterized by a
discontinuous behavior of the mean separations and by a
finite contact probability . In real systems, attractive 3--
membrane potentials can indeed arise from van der Waals
forces.

ground state that these contact probabilities have the scaling
behavior

with . (4.1)

Comparison with (3.5) shows that but that
for . This behavior should also apply to a system

with only one rigid surface where the mean separation of the
n'th string from the rigid surface plays the role of . One
nontrivial test is provided by the necklace model for three
strings if one considers the limit in which the line tension
of one of the outer strings, say , becomes infinite. In this
limit, one has and thus as follows from
(3.6). On the other hand, far from the rigid wall, one should
recover the contact probabilities for a freely suspended
bundle as given by (3.5).

Using the analogy between strings and membranes, one
now predicts that the contact probabilities for mem-
branes to be close to a rigid surface scale as
with

4. N membranes or strings at a rigid surface

As mentioned, many preparation methods lead to bunches of
membranes which stick to a solid substrate or another sur-
face. Thus, let us consider a bunch of identical membranes
with bending rigidity which adheres to a rigid surface.

4.1. Repulsive hard wall interactions

It is again instructive to consider the case of the simple pair
potential which consists of the steric
hard wall potential and the pressure term. This corresponds
to the situation in which the mutual interactions within the
bunch are purely repulsive and the bunch is pushed against
the rigid wall by the external pressure

Let us first focus on one pair of adjacent surfaces labelled
by and with which have
the mean separation and the bending rigidities and

, respectively. If one ignores all other surfaces, the mean
separation is governed by the effective bending rigidity

For the bunch of identical membranes with
adjacent to the rigid surface with , these effective
bending rigidities are given (i) by for the mean
separation of the first membrane from the rigid surface

and (ii) by for the mean separations with
. If one uses these rigidities in the expression for

the fluctuation-induced potential as given by (2.1), one
expects the asymptotic relation with for
small pressure . This is exactly what is observed in the
MC simulations. [12, 13]

Contact probabilities. The presence of the rigid surface
breaks the translational invariance of the system. This should
affect the contact probabilities for manifolds to be
close to the rigid surface as can be explicitly calculated for a
bundle of strings between two rigid surfaces at separation

. For this latter system, one finds from the free fermion

4.2. Attractive interactions and unbinding transitions

Now, consider the case of direct interactions with a single
potential minimum as shown in Fig. 2a. In general, the in-
teraction between the rigid surface or wall and the
first membrane will differ from the mutual interaction
of two membranes.

Possible unbinding temperatures. As described in the previ-
ous section, an arbitrary number of freely suspended mem-
branes unbinds at the unique unbinding temperature
Therefore, a bunch containing more than one membrane can-
not unbind from the substrate surface for . In par-
ticular, the whole bundle can only unbind from the substrate
for

On the other hand, for , a single membrane
cannot unbind from the remaining membranes at
the surface since this -bunch must have an effective
bending rigidity which is larger than the freely suspended

-bunch.
Thus, one concludes that there are only two possi-

bilities: (i) The whole bunch unbinds from the wall for
, and (ii) single membranes peel off from

the bunch for . Depending on the relative strength
of the surface-membrane and the membrane-membrane in-
teraction, these two types of behavior are indeed found from
explicit calculations.

Numerical studies. The unbinding of and 2 mem-
branes from a rigid surface has been studied numerically
by Monte Carlo simulations. The surface potential
was taken to be a square well and to be identical with the
mutual interaction potential . In this case, one observes
a sequence of two unbinding transitions at
and at which the outmost membrane unbinds
from the surface. Likewise, the unbinding of , 2 and 3
strings from a rigid line with has been studied
by numerical iterations of the transfer matrix. As a result,



200

Fig. 3. Phase diagram for bundles of strings: the two parameters
and denote the effective strength of the string-string

and the surface-string interaction, respectively [4]

one finds a sequence of three unbinding transitions at three
characteristic temperatures with
At all of these transitions, the diverging length scales are
governed by the unbinding exponent

In the continuum limit, the temperature
since and the effective bending rigidity is given
by for two identical membranes and by
for one membrane at the rigid surface. In the numerical
studies, this temperature window for the sequence of un-
binding transitions is reduced by the presence of the small-
scale cutoff (for the parameters as chosen in [3], one has

=1.14 ).

Strings with pair potentials. The unbinding of strings
from a rigid line can be studied by the Bethe Ansatz. [4]
The model now depends on the effective strength of the
pair potential for two strings and on the effective strength

of the interaction potential between the rigid surface
and the adjacent string. The phase diagram of this model is
shown in Fig. 3 for

In regime (BN), all strings are bound to the wall. For
, i.e., for effectively attractive string-string interac-

tions, all strings unbind simultaneously from the wall at
. In regime (FB), the strings form a free

(or unbound) bundle. For , on the other hand, the
strings undergo a sequence of successive unbinding tran-
sitions. The th string peels off from the rigid surface at

, and one finds different regimes
(Bn) with strings bound to the rigid surface.
When the point is approached from regime (BN),
the strings unbind simultaneously from the wall as well as
from each other. For and , one has the free
string (FS) regime.

Across all phase boundaries displayed in Fig. 3, both
the free energy and its first derivative are
continuous whereas its second derivative with respect to
exhibits a discontinuity. Hence these transitions are of sec-
ond order with the critical exponent for the specific
heat. At the phase boundary between (BN) and (BN-1), the
mean separations with are continuous but their

first derivatives exhibit a jump. The critical expo-
nent for the diverging length scales has the universal value

at each transition line, even at the point
Regime (BN) and regime (FS) are attained at sufficiently

low and sufficiently high temperatures, respectively. De-
pending on the relative strength of the string-string and
the surface-string attraction, the temperature trajectory will
move from (BN) to (FS) via the free bundle regime (FB) or
via the intermediate states (Bn). In the latter case one has
a sequence of unbinding transitions. In the limit of infi-
nite , the corresponding sequence of critical temperatures

attains the finite value [3]. It now follows from the
explicit expressions for the phase boundaries that [4]

with . (4.2)

5. Summary and outlook

In summary, the two systems shown in Fig. 1 exhibit differ-
ent types of unbinding transitions:

(i) freely suspended membranes or strings unbind at
a unique unbinding temperature which is independent of
The corresponding density profiles strongly depend on ,
however, compare the expression (3.11) for the mean sepa-
rations within the bunch. Therefore, in the limit of large ,
the transition will be rather abrupt and thus will resemble a
discontinuous transition even though it is still a continuous
one; and

(ii) If the manifolds are attracted towards a rigid sur-
face, relatively weak adhesion towards the surface leads to
two unbinding transitions in which the whole bunch unbinds
from the wall at and then disintegrates into
single membranes at . Relatively strong adhesion, on
the other hand, leads to a sequence of successive unbind-
ing transitions in which one membrane after another peels
off from the bunch. Thus, the presence of the rigid surface is
felt by the outmost membrane even if there is a large number
of intervening membranes.

In all cases discussed above, the unbinding behavior of
(fluid) membranes and strings is found to be very similar.
This analogy breaks down, however, as soon as the direct
interaction exhibits a potential barrier as shown in Fig. 2b.
If the barrier decays faster than for large , strings
in two dimensions always tunnel through such a barrier and
thus always undergo continuous unbinding transitions. Even
though membranes tunnel through sufficiently weak barri-
ers, they are trapped by sufficiently large ones. Thus, the
unbinding transition of membranes through a potential bar-
rier is continuous and discontinuous for weak and for strong
barriers, respectively. This follows from simple stability ar-
guments in which one considers the free energy of island
excitations through the potential barrier [35], and is consis-
tent with recent Monte Carlo simulations [36].

It is interesting to note that the qualitative features
discussed here for fluid membranes should also apply to
bunches of polymerized membranes. For example, it would
be interesting to determine the contact probabilities within
a bunch of polymerized membranes with hard-wall inter-
actions. This would give another non-trivial check for the
scaling relation (3.7) which expresses the contact exponent

in terms of the roughness exponent .
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Appendix A. Renormalized interactions

Consider a bunch of membranes labelled by with
which have bending rigidities and which

are, on average, parallel to a reference plane. The distance
of membrane from this reference plane is denoted by the
height variable . The two adjacent membranes labelled by

and interact via the pair potential
and are pushed together by external pressures with

. In a real system, these pressures are usually
equal to the overall pressure acting on the whole bunch,
but it is conceptually useful to allow these pressures to vary
within the bunch.

The conformations of the bunch is then governed by the
configurational energy or effective Hamiltonian as given by

(A.1)

For strings with line tensions , the effective Hamilto-
nian has essentially the same form: for strings, the internal
coordinate is 1-dimensional, and the bending
terms must be replaced by the tension terms

In the absence of any additional constraint, the sys-
tem is translationally invariant in the perpendicular direc-
tion, and the translation of the whole bunch represents a
'zero mode'. As a consequence, the 'center-of-mass' co-
ordinate decouples from the separation fields

, and the effective Hamiltonian can be divided
as . The partition function
is obtained by a summation over the separation fields , and
the corresponding free energy per unit area is given by

(A.2)

where represents the multiple path integral over all
configurations of and denotes the area
of the manifolds when projected onto the reference plane.

One may now perform a Legendre transformation from
the pressure variables to the separation variables

, and define the Legendre-
transformed free energy per unit area via

(A.3)

This free energy density contains the renormalized interac-
tions of all nearest neighbor pairs of manifolds within the
bunch since

Constant pressure. If all pressures are equal to the over-
all external pressure , one has
i.e., the pressure is now conjugate to the mean thickness of
the whole bunch or bundle. The Legendre-transformed free
energy per unit area is then given by

with . (A.4)

Thus, this free energy density can be viewed as an effective
interaction for the whole bunch, see Sect. 3.1.

Two manifolds. For , the mean separation of the two
manifolds is denoted by , and the corresponding
free energy density represents the renormal-
ized interaction of these two manifolds. This definition of
the renormalized interaction holds for any direct interaction

. As usual, if the system undergoes a phase transition,
the equation of state as given by has several
solutions for corresponding to several distinct states of the
system.

Appendix B.
Renormalization of steric hard wall potentials

In this appendix, systematic procedures for the derivation of
the fluctuation-induced interaction will be discussed. Such
a derivation must start from the steric hard wall interaction

as defined by

which incorporates the constraint that the manifolds cannot
intersect one another. This potential represents the simplest
direct interaction since it contains no energy and no length
scale.

The fluctuation-induced interaction can be viewed as
the effective interaction which arises from the renormaliza-
tion of the hard wall interaction . It turns out, however,
that there are several possible ensembles which, in general,
lead to somewhat different values for the dimensionless co-
efficient which governs the strength of , compare
(2.1)

Pressure ensemble. First, the manifolds which interact by
repulsive hard wall potentials as in (B.1) can be kept together
by the external pressure . As explained in Appendix A, this
pressure is conjugate to the separation of the two outer
manifolds of the bunch, and the Legendre-transformed free
energy is then given by with

. Let us now anticipate that the mean
separation of two adjacent manifolds labelled by and

is of the order of for all . One
may then define the free energy density per separation field

(B.2)

which determines according to . There-
fore, the quantity represents the effective interaction be-
tween two adjacent membranes as obtained from the renor-
malization of the hard wall interaction , and may
be identified with the fluctuation-induced interaction, i.e.,

for
for 

(B.1)
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Periodic slab. manifolds which interact via repulsive
hard wall interactions may also be confined by external
boundaries. From the theoretical point of view, it is often
convenient to confine them by a slab (or strip) of width
and to impose periodic boundary conditions in the perpen-
dicular direction (in two dimensions, this corresponds to the
surface of a cylinder). In this geometry, the bunch or bundle
is still translationally invariant in the perpendicular direc-
tion, which implies that all separations between nearest
neighbor manifolds are identical, i.e., and that
the width of the strip is . The translational invari-
ance also implies that the 'center-of-mass' coordinate again
represents a 'zero mode' which undergoes free shape fluc-
tuations (along the surface of the cylinder). However, all
fluctuating fields give a finite contribution to the partition
function (for finite ), and one does not have to treat the
'zero mode' separately.

The partition function is now given by a multi-
ple path integral over all configurations of
The corresponding free energy density per manifold is de-
fined via

(B.3)

where is the projected area of the manifolds as before.
This free energy density represents a second possible
definition of the fluctuation-induced interaction which
will, in general, differ from the Legendre-transformed free
energy density

Fixed slab. As a third possibility, the manifolds which
repel one another via hard wall interactions may be con-
fined by two rigid walls, i.e., by a slab (or strip) with fixed
boundary conditions. In this geometry, the translational in-
variance is broken and the 'zero mode' is suppressed. There
are local separation fields with mean values which
depend, to some extent, on the position of the nearest neigh-
bor pairs within the bunch or bundle. If the separation of the
two rigid walls is denoted by , these mean values are of
the order of

The height variable now measures the separation of
manifold from one of the two rigid walls, say the bot-
tom one. The partition function is given by a multiple
path integral over all configurations of with

and for as before, and the
corresponding free energy density per manifold is

(B.4)

This free energy density gives yet another definition of the
fluctuation-induced interaction.

Large rigidity limit. In order to see if the different ensembles
introduced in the previous subsections are equivalent, it is
quite instructive to consider the limit of large rigidities in
which all shape fluctuations are suppressed and in which
each manifold reduces to a 'point particle', i.e., to a single
degree of freedom. In this limit, the path integrals reduce
to normal integrals, and the free energies defined in (B.2),
(B.3), and (B.4) may be easily calculated.

In the pressure ensemble, one finds that the mean sepa-
ration of two adjacent 'point particles' is independent of the
position , and the separation of two adjacent particles is
given by . The free energy density as
defined by (B.2) then becomes

(B.5)

with the small-scale cutoff
On the other hand, the partition functions and

for the periodic and for the fixed slab are given by
and by , respec-

tively. For finite , the corresponding free energy densities
and differ from as given by the expres-

sion (B.5) but they become identical with this expression in
the limit of large
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